Experiment No.: 9

Title: Cryptographic Hash Functions and Applications

Objective:

Our main objective is to understand the need, design and applications of collision resistant hash functions.

Expected Outcome of Experiment:

CO	Outcome
3	Comprehend cryptographic hash functions, Message Authentication Codes and Digital Signatures for Authentication

Books/ Journals/ Websites referred:

- 1. <u>http://cse29-iiith.vlabs.ac.in/</u>
- 2. https://en.wikipedia.org/wiki/SHA-1
- 3. https://en.wikipedia.org/wiki/HMAC

Abstract: - Some key terms used:

- Plaintext Original message
- Encryption algorithm Performs substitution and transformations on the plaintext.
- key An input to the algorithm that makes it produce a different output depending on the key.
- Ciphertext Unintelligible message created using the encryption algorithm.
- Decryption algorithm Encryption algorithm applied in reverse and produces the plaintext using the key and ciphertext.
- Hash Function: A hash function is a mathematical function that converts a numeric al input into another compressed numerical value.
- SHA- Stands for Secure Hashing Algorithm. It is a one-way function which converts a data string into a numerical string output of fixed length.

Hash Function:

A hash function is a mathematical function that converts a numerical input value to another compressed numerical value.

The input to the hash function is of arbitrary length but output is always of fixed length. Values returned by a hash function are called message digestors simply hash values. **Cryptographic Hash Function:** Hash functions used for Security applications are known as Cryptographic Hash Function.

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

Properties:

- It is computationally infeasible to find either
 - A data object that maps to a pre-specified hash result (the one-way property)
 - Two data objects that map to the same hash result (the collision-free property)

Simple Hash Function: There are two simple hash function, all hash functions are operating using the same principle:

- 1. The message file is like a simple input it opens a sequence on n-bit blocks
- 2. When input is processed only one block at the given time in iterative fashion to generate an n-bit hash function.
- 3. The simple hash function is the bit-by-bit XORing done of every block.

	bit 1	bit 2		bit n
block 1	b11	b21		b_{s1}
block 2	b ₁₂	b22		b_{n2}
<=n	•	•	•	
nnut	•	•	· ·	•
inpar	•	•	•	•
block m	b_{Lm}	b2e		b_{nin}
hash code	c_1	C2		C _a
	block 1 block 2 <=n block m block m hash code	$\begin{array}{c c} & bit 1 \\ \hline block 1 & b_{11} \\ block 2 & b_{12} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Hash Algorithm:

- A hash algorithm is a one-way function that converts a data string into a numeric string output of fixed length. The output string is generally much smaller than the original data. Therefore, it is also called message digest or message compression algorithm.
- Hash algorithms are designed to be collision-resistant, meaning that there is a very low probability that the same string would be created for different data. Two of the most common hash algorithms are the MD5 (Message-Digest algorithm 5) and the SHA-1 (Secure Hash Algorithm). MD5 Message Digest checksums are commonly used to validate data integrity when digital files are transferred or stored.

Hash Function Family:

• MD (Message Digest) - Designed by Ron Rivest Family: MD2, MD4, MD5

• SHA (Secure Hash Algorithm) - Designed by NIST

Family: SHA-O, SHA-1, and SHA-2: SHA-224, SHA-256, SHA-384, SHA-512 SHA 3: New standard in competition

• RIPEMD (Race Integrity Primitive Evaluation Message Digest) - Developed by Katholieke University Leuven Team

Family: RIPEMD-128, RIPEMD-160, RIPEMD-256, RIPEMD-320 SHA-1

- SHA1: Secure Hash Algorithm 1 Designed by the United States National Security Agency
 - Produces hash value known as Message Digest
 - Works for any input message that is less than 264 bits

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

- Produces 160 bits length message digest
- Infeasible to retain the original message from the message digest
- Same message digest to be produced from both sender and receiver
- Purpose: Authentication, not Encryption
- Widely used in security applications and protocols, including TLS,
- SSL, PGP, SSH, IPsec and S/MIME

Steps:

- 1. Append Padding bits- padding bits are added to the original message to make the original message equal to a value divisible by 512
- 2. Append length. The rest two words are preserved for the original message length.
 - a. These 512 bits input to the compression function
 - b. The message divided into 16 words.
 - c. Each word consists of 32 bits.
 - d. 512/32 = 16 words
- 3. Initialize the hash buffer- Initial values of H0 are predefined and stored in registers ABCDE

Н	Hex			
H0(A)	01234567			
H0(B)	89ABCDEF			
H0(C)	FEDCBA98			
H0(D)	76543210			
H0(E)	C3D2E1F0			

These initial values are used in Round 0

- 4. SHA processing- Word assigning to rounds:
 - a. SHA1 has 80 rounds defined.
 - b. The Message Scheduler Algorithm schedules each word to rounds as:
 - Wo \rightarrow Round 0 W \rightarrow Round 1 W 15 \rightarrow Round 15 W 16 \rightarrow Round 16 . . W79 \rightarrow Round 79 c. Each round = 20 iterations d. Total iterations = 80 e. Word assigning to other rounds:
 - f. For others (i.e., round 16-79)
 - g. W[t] = S'(W[t-16] XOR W[t-14] XOR W[t-8] XOR W[t-3])

Division of stages:

Each round has 20 rounds

Stages	Round
t=1	0 - 19
t=2	20-39
t=3	40 - 59
t=4	60 - 79

Stages	Round
t1	K1 = 0X5A827999
t2	K2 =
	0X6ED9EBA1
t3	K3=0X8F1BBCDC
t4	K4 =
	0XCA62C1D6

Process in each round: Each round takes 3 inputs:

- 32-bit word form 512-bit block (i.e., Wt.)
- The values from register ABCDE
- Constant K_t

The F_t is different at each stage

Stage	$\mathbf{F}_{\mathbf{t}}$				
t ₁	$F_t(B, C, D) = (B AND C) OR ((NOT B) AND D)$				
t ₂	$F_t(B, C, D) = B XOR C XOR D$				
t3	$F_t(B, C, D) = (B AND C) OR (B AND D) OR (C$				
	AND D)				
t4	$F_t(B, C, D) = B XOR C XOR D$				

At each round:

- Output of Ft and E are added
 - Value in register A is 5 bit circular-left shifted
 - This then added to previous sum
 - Wt. is added
 - Kt introduced
 - B is circular left shifted by 30 bits
- New values for next round

- 5. The Output- After the Final round:
- The 160-bit output from the final round is modulo added to the initial predefined values of H0 at registers ABCDE
- Output obtained this is a 160-bit hash code

Hash based Message Authentication Code (HMAC)

- Hash-based message authentication code (HMAC) is a mechanism for calculating a message authentication code involving a hash function in combination with a secret key. This can be used to verify the integrity and authenticity of a message.
- HMACs are almost similar to digital signatures. They both enforce integrity and authenticity. They both use cryptography keys. And they both employ hash functions.
- The main difference is that digital signatures use asymmetric keys, while HMACs use symmetric keys (no public key).

HMAC Structure

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

Define the following terms:

- II = embedded hash function (e.g., SI IA)
- M = message input to HMAC (including the padding specified in the embedded hash function)
- Yi = ith block of M, $0 \le i \le (L 1)$
- L = number of blocks in M
- b = number of bits in a block
- n =length of hash code produced by embedded hash function
- K = secret key; if key length is greater than b, the key is input to the hash function to produce an n-bit key; recommended length is > n
- $K^+ = K$ padded with zeros on the left so that the result is b bits in length
- ipad = 00110110 (36 in hexadecimal) repeated b/8 times
- opad = 01011100 (5C in hexadecimal) repeated b/8 times
- Then HMAC can be expressed as follows:

HMAC (K, M) = H [(K+ \bigoplus opad) = H (K+ \bigoplus ipad) || M]]

In words,

1. Append zeros to the left end of K to create a b-bit string K+ (e.g., if K is of length 160 bits and b = 512, then K will be appended with 44 zero bytes Ox00).

- 2. XOR (bitwise exclusive-OR) K+ with ipad to produce the b-bit block Si.
- 3. Append M to Si.
- 4. Apply H to the stream generated in step 3.
- 5. XOR K+ with opad to produce the b-bit block S0.
- 6. Append the hash result from step 4 to S0.
- 7. Apply H to the stream generated in step 6 and output the result.

Procedure:

- 1. Familiarize yourself with the working of SHA-1. Though we would be using a dummy hash in the sequel for simplicity, in general, you could be using SHA-1 instead
- 2. Select a plaintext for which the HMAC tag is to be computed (by clicking on Next Plain text Button)
- 3. For simplicity fix l=8 which is default, but it should be l < (length of plaintext)/4.]
- 4. Select an Initialization Vector, IV of length l.by clicking on "Next IV" button)
- 5. Use the ipad and opad as described in theory part to compute the ciphertext with the help of the hash function provided to you.
- 6. Divide generated plaintext 'm' into say 'k' chunks of 8 bits and kth chunk will have bits less than 8, to make it 8-bits by padding zeros at end
- 7. Compute z0="IV|| (k XOR ipad)" manually where || implies concatenation and enter z0 in "Your text" field to get z1
- Compute z1="z0||m1" manually where || implies concatenation and enter z1 in "Your text" field to get z2
- 9. Repeat above step and finally compute z(k+1)="zk||L" where L=|m|, make L 8bits by padding zeros to left of it
- 10. Compute p="IV|| (k XOR opad)" manually where || implies concatenation and enter p in "Your text" field to get q
- 11. Compute r="q||z (k+1)" manually where || implies concatenation and enter 'r' in "Your text" field to get final HMAC tag 't'

- 12. Notice that z0, z1, z2,zk, z (k+1), p, r is all of size '2l' (=16 in our case as l=8).
- 13. Write the final cipher text 't' in 'Final Output' field and check your answer

Virtual labs assignment screenshots:

•••	Classwork for Applie	d Cryptog: 🗴 🚺 Virtua	il Labs	🗙 [🛓 Virtual Labs	× 😰 (3)	WhatsApp	× +	Ý
	C 🛆 🔒 cse29-iiith	.vlabs.ac.in/exp/hash-fu	unctions/simulation.htr					ů ☆ 🖈 🖬 🚯 i
YouTub	e 🌀 Google 附 Gmail	Speedtest by Ookl	💼 News 🕕 Upscal	epics Ups ₍ Snapdrop	📥 My Drive - Google	Pargat-Dhanjal (P	S GPON Home Gate	» 🗎 Other Bookmarks
≡			Cryptogra	ohic Hash Funct	ons and Appl	lications(HMA	.C)	
				<u>A simulat</u>	or for SHA-1			
Plaintext (s	string):							
Pargat								
SHA-1								
Hash outpu	ut(hex):							
c2464b01b7b742230e89c27ccfa7ff952e8df84								
HMAC Construction using a "Dummy" Hash Function								
HMAC co	Instruction							
	11000000011110	0101010						
Plaint	ext:		a and a second sec	Next Plaintext				
length of	Initialization Vecto	r (IV), 1, 8						
	IV: 11001100			Next IV				
Kev	k: 10000101			Next Key				

Classwork for Appli	ed Cryptog X 🚺 Virtual L	tions/simulation.html	Labs X (5 core	ect - Google Search X +	
YouTube G Google M Gmai	Speedtest by Ookl	News 🕕 Upscalepics Ups 💿	Snapdrop 💧 My Drive - Google	🎧 Pargat-Dhanjal (P 📀 GPON Home Gate	. » 🖹 Other Bookm
		Cryptographic Hash	Functions and Appl	lications(HMAC)	
		HMAC CONSI	uction using a Dummy Hasn P	runction	
AC construction					
11000000011110	0101010				
Plaintext:		Next Plaintex	t		
ngth of Initialization Vecto	or (IV), 1, 8				
IV: 11001100		Next IV			
Key, k: 10000101		Next Key			
ad: 0x5C (01011100)					
t your text of size 21 to ge	t the corresponding va	ue of hash of size 1.			
Your text: 010000001010100	0	get hash			
shed value: 10001110					
00101100			-		
hal Output:		Check Answer			
RECTII					

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Conclusion: Successfully conducted the given Hash based experiment.