
Software Architecture and
Design Thinking

116U01C701

Module 3

Modelling, Analysis

3.1 Modeling Concepts, Ambiguity, Accuracy, and Precision
3.2 Complex Modelling: Mixed Content and Multiple Views. Analysis

Goals, Scope of Analysis, Architectural Concern being Analysed,
3.3 Level of Formality of Architectural Models, Type of Analysis,

Analysis Techniques
3.4 Designing for Non-Functional Properties and implementation

Module 3 2024-25 2

3.1 Modeling Concepts

Concepts :
• What is modeling?
• How do we choose what to model?
• What kinds of things do we model?
• How can we characterize models?
• How can we break up and organize models?
• How can we evaluate models and modeling notations?

Module 3 2024-25 3

Architectural Modelling
Architectures are characterized as the set of principal design
decisions made about a system
• We can define models and modeling in those terms

An architectural model is an artifact that captures some or all of
the design decisions that comprise a system’s architecture
Architectural modeling is the reification (presenting abstract idea)
and documentation of those design decisions

• How we model is strongly influenced by the notations we
choose:

An architectural modeling notation is a language or means of
capturing design decisions.

Module 3 2024-25 4

Choose What to Model
Architects and other stakeholders must make critical decisions:

• What architectural decisions and concepts should be modeled
• At what level of detail
• With how much rigor or formality

• These are cost/benefit decisions
• The benefits of creating and maintaining an architectural model must

exceed the cost of doing so

Module 3 2024-25 5

Stakeholder-Driven Modelling

• Stakeholders identify aspects of the
system they are concerned about

• Stakeholders decide the relative
importance of these concerns

• Modeling depth should roughly
mirror the relative importance of
concerns

Module 3 2024-25 6

What to Model

⚫ Basic architectural elements
Components
Connectors
Interfaces
Configurations
Rationale – reasoning behind decisions

Module 3 2024-25 7

What do we model

⚫ Elements of the architectural style
Inclusion of specific basic elements (e.g., components,
connectors, interfaces)
Component, connector, and interface types
Constraints on interactions
Behavioral constraints
Concurrency constraints
…

Module 3 2024-25 8

What do we model
⚫ Static and Dynamic Aspects

Static aspects of a system do not change as a system runs
⚫e.g., topologies, assignment of components/connectors to

hosts, …
Dynamic aspects do change as a system runs
⚫e.g., State of individual components or connectors, state of a

data flow through a system, …
This line is often unclear
⚫Consider a system whose topology is relatively stable but

changes several times during system startup

Module 3 2024-25 9

What do we Model

⚫ Functional and non-functional aspects of a system
Functional
⚫“The system prints medical records”

Non-functional
⚫“The system prints medical records quickly and

confidentially.”
⚫ Architectural models tend to be functional, but like rationale

it is often important to capture non-functional decisions
even if they cannot be automatically or deterministically
interpreted or analyzed

Module 3 2024-25 10

Important Characteristics of Models

⚫ Ambiguity
A model is ambiguous if it is open to more than one
interpretation

⚫ Accuracy and Precision
Different, but often conflated concepts
⚫A model is accurate if it is correct, conforms to fact,

or deviates from correctness within acceptable limits
⚫A model is precise if it is sharply exact or delimited

Module 3 2024-25 11

Accuracy v/s Precision

Inaccurate and
imprecise:

incoherent or
contradictory

assertions

Accurate but
imprecise:

ambiguous or
shallow

assertions

Inaccurate but
precise:
detailed

assertions that
are wrong

Accurate and
precise:
detailed

assertions that
are correct

Module 3 2024-25 12

3.2 Views and Viewpoints
⚫ Generally, it is not feasible to capture everything we want to model

in a single model or document
The model would be too big, complex, and confusing

⚫ So, we create several coordinated models, each capturing a subset of
the design decisions

Generally, the subset is organized around a particular concern or
other selection criteria

⚫ We call the subset-model a ‘view’ and the concern (or criteria) a
‘viewpoint’

Module 3 2024-25 13

Views and View-point

Deployment view of a 3-tier application

Instance of a view is view-point

Module 3 2024-25 14

Commonly-Used Viewpoints

⚫ Logical Viewpoints
Capture the logical (often software) entities in a system
and how they are interconnected.

⚫ Physical Viewpoints
Capture the physical (often hardware) entities in a system
and how they are interconnected.

⚫ Deployment Viewpoints
Capture how logical entities are mapped onto physical
entities.

Module 3 2024-25 15

Commonly-Used Viewpoints
⚫ Concurrency Viewpoints

Capture how concurrency and threading will be
managed in a system.

⚫ Behavioral Viewpoints
Capture the expected behavior of (parts of) a system.

Module 3 2024-25 16

Consistency Among Views
⚫ Views can contain overlapping and related design decisions
⚫ There is the possibility that the views can thus become

inconsistent with one another
⚫ Views are consistent if the design decisions they contain are

compatible
⚫ Views are inconsistent if two views assert design decisions that

cannot simultaneously be true
⚫ Inconsistency is usually but not always indicative of problems
⚫ Temporary inconsistencies are a natural part of exploratory

design
⚫ Inconsistencies cannot always be fixed

Module 3 2024-25 17

Common Types of Inconsistencies

• Direct inconsistencies
 E.g., “The system runs on two hosts” and “the system runs on

three hosts.”
• Refinement inconsistencies

• High-level (more abstract) and low-level (more concrete) views of the same
parts of a system conflict

• Static vs. dynamic aspect inconsistencies
• Dynamic aspects (e.g., behavioral specifications) conflict with static aspects

(e.g., topologies)

• Dynamic vs. dynamic aspect inconsistencies
• Different descriptions of dynamic aspects of a system conflict

• Functional vs. non-functional inconsistencies
Module 3 2024-25 18

Analysis Goals

• Goals may include early estimation of system size, complexity, cost
• Adherence of architectural model to design guidelines and constraints
• Satisfaction of system functional and non functional requirements
• Assessment of the implemented system ‘s correctness with respect

to it’s documented architecture
• Evaluation of opportunities for reusing existing functionality when

implementing parts of the modelled system

Module 3 2024-25 19

Architectural Analysis Goals

• The four “C”s
• Completeness
• Consistency
• Compatibility
• Correctness

Module 3 2024-25 20

Architectural Analysis Goals – Completeness

• Completeness is both an external and an internal goal
• It is external with respect to system requirements

• Challenged by the complexity of large systems’ requirements and
architectures

• Challenged by the many notations used to capture complex requirements as
well as architectures

• It is internal with respect to the architectural intent and modeling
notation

• Have all elements been fully modeled in the notation?
• Have all design decisions been properly captured?

Module 3 2024-25 21

Architectural Analysis Goals – Consistency
• Consistency is an internal property of an architectural model
• Ensures that different model elements do not contradict one

another
• Dimensions of architectural consistency

• Name
• Interface
• Behavior
• Interaction
• Refinement

Module 3 2024-25 22

Name Consistency

• Component and connector names
• Component service names
• May be non-trivial to establish at the architectural level

• Multiple system elements/services with identical names
• Loose coupling via publish-subscribe or asynchronous event broadcast
• Dynamically adaptable architectures

Module 3 2024-25 23

Interface Consistency

• Encompasses name consistency
• Also involves parameter lists in component services
• A rich spectrum of choices at the architectural level
• Example: matching provided and required interfaces

 ReqInt: getSubQ(Natural first, Natural last, Boolean remove)

 returns FIFOQueue;

 ProvInt1: getSubQ(Index first, Index last)

 returns FIFOQueue;

 ProvInt2: getSubQ(Natural first, Natural last, Boolean remove)

 returns Queue;

Module 3 2024-25 24

Behavioral Consistency
• Names and interfaces of interacting components may match, but behaviors need not
• Example: subtraction

 subtract(Integer x, Integer y) returns Integer;

• Can we be sure what the subtract operation does?
• Example: QueueClient and QueueServer components

 QueueClient
 precondition q.size > 0;

 postcondition ~q.size = q.size;

 QueueServer
 precondition q.size > 1;

 postcondition ~q.size = q.size - 1;

Module 3 2024-25 25

Interaction Consistency

• Names, interfaces, and behaviors of interacting components
may match, yet they may still be unable to interact properly

• Example: QueueClient and QueueServer components

Module 3 2024-25 26

Refinement Consistency

• Architectural models are refined during the design process
• A relationship must be maintained between higher and lower level

models
• All elements are preserved in the lower level model
• All design decisions are preserved in the lower-level model
• No new design decisions violate existing design decisions

Module 3 2024-25 27

Refinement Consistency Example

Module 3 2024-25 28

Compatibility

• Compatibility is an external property of an architectural model
• Ensures that the architectural model adheres to guidelines and

constraints of
• a style
• a reference architecture
• an architectural standard

Module 3 2024-25 29

Correctness

• Correctness is an external property of an architectural model
• Ensures that

1. the architectural model fully realizes a system specification
2. the system’s implementation fully realizes the architecture

• Inclusion of OTS elements impacts correctness
• System may include structural elements, functionality, and non-functional

properties that are not part of the architecture
• The notion of fulfillment is key to ensuring architectural correctness

Module 3 2024-25 30

Scope of Analysis

• Component- and connector-level Analysis
• Component-application dependent
• Connector-application independent

• Subsystem- and system-level
• System is collection of components and connectors
• Beware of the “honey-baked ham” syndrome

• Data exchanged in a system or subsystem
• Data structure – types or untyped, discrete or streamed
• Data flow – point to point or broadcast
• Properties of data exchange-consistency, security and latency
• Data is properly modeled implemented and exchanged
• Web application, e-commerce and multimedia

• Architectures at different abstraction levels
• Comparison of two or more architectures

• Processing
• Data
• Interaction
• Configuration
• Non-functional properties

Module 3 2024-25 31

Module 3 2024-25

Data Exchange Example

32

• Structural characteristics
• Behavioral characteristics
• Interaction characteristics
• Non-functional characteristics

Architectural Concern Being Analyzed

Module 3 2024-25 33

• Informal models
• Semi-formal models
• Formal models

3.3 Level of Formality

Module 3 2024-25 34

• Static analysis:
• Inferring the properties of a software system from one or more of its models

without actually executing those models.
• E.g. syntactic analysis (checks only if the syntax is right, used appropriate

notations, use of architectural description language, design diagram
notations)

• Can be automated by compilation or manual by inspection

• Dynamic analysis:
• Involves actual execution or simulation of a model
• Performed only after semantic analysis (static)
• State transition diagram
• Scenario-driven analysis

• Can be both static and dynamic

Type of Analysis

Module 3 2024-25 35

• Scenario based Analysis
• Difficult to analyze big complex system
• Use case based analysis
• May contain both static and Dynamic

Type of Analysis

Module 3 2024-25 36

Level of Automation

• Manual – significant human involvement
• Partially Automated – Tools and Human
• Fully Automated - Tools

Module 3 2024-25 37

3.3 Analysis Techniques

Module 3 2024-25 38

Analysis Techniques Categories

Module 3 2024-25

• Inspection- and review-based:
• Model-based
• Simulation-based

39

Analysis Techniques Categories

Module 3 2024-25

• Inspection- and review-based:
• Architectural models studied by human stakeholders for

specific properties
• The stakeholders define analysis objective
• Can fulfill any of the four Goals - Cs
• Manual techniques

• Can be expensive
• Useful in the case of informal architectural descriptions
• Useful in establishing “soft” system properties

• E.g., scalability or adaptability
• Able to consider multiple stakeholders’ objectives and

multiple architectural properties 40

Analysis Techniques Categories

Module 3 2024-25

• Inspection- and review covers:
• Analysis Goals – any
• Analysis Scope – any
• Analysis Concern – any, but particularly suited for non-

functional properties
• Architectural Models – any, but must be geared to

stakeholder needs and analysis objectives
• Analysis Types – mostly static and scenario-based
• Automation Level – manual, human intensive
• Stakeholders – any, except perhaps component vendors

41

Analysis Techniques Categories

Module 3 2024-25

• Architectural Trade-off Analysis Method (ATAM) :
• Human-centric process for identifying risks early on in software

design
• Focuses specifically on four quality attributes (NFPs)

• Modifiability
• Security
• Performance
• Reliability

• Reveals how well an architecture satisfies quality goals and how
those goals trade-off

43

Analysis Techniques Categories

Module 3 2024-25

• Architectural Trade-off Analysis Method (ATAM) :

44

Analysis Techniques Categories

Module 3 2024-25

• ATAM Business Drivers :
• The system’s critical functionality
• Any technical, managerial, economic, or political

constraints
• The project’s business goals and context
• The major stakeholders
• The principal quality attribute (NFP) goals

45

Analysis Techniques Categories

Module 3 2024-25

• ATAM Scenarios:
⚫ Use-case scenarios

Describe how the system is envisioned by the stakeholders to be
used

⚫ Growth scenarios
Describe planned and envisioned modifications to the architecture

⚫ Exploratory scenarios
Try to establish the limits of architecture’s adaptability with respect
to
⚫ system’s functionality
⚫ operational profiles
⚫ underlying execution platforms

Scenarios are prioritized based on importance to stakeholders
46

Analysis Techniques Categories

Module 3 2024-25

• Project Architects presenting key facet of the
architecture:

• Technical constraints
• Required hardware platforms, OS, middleware,

programming languages, and OTS functionality
• Any other systems with which the system must interact
• Architectural approaches that have been used to meet the

quality requirements
• Sets of architectural design decisions employed to solve

a problem
• Typically architectural patterns and styles 47

Analysis Techniques Categories

Module 3 2024-25

• ATAM Analysis:
• Key step in ATAM
• Objective is to establish relationship between architectural

approaches and quality attributes
• For each architectural approach a set of analysis questions are

formulated
• Targeted at the approach and quality attributes in question

• System architects and ATAM evaluation team work together to answer
these questions and identify
• Risks → these are distilled into risk themes
• Non-Risks
• Sensitivity points
• Trade-off points

• Based on answers, further analysis may be performed
48

Analysis Techniques Categories

Module 3 2024-25

• ATAM summary:

Goals

Completeness
Consistency
Compatibility
Correctness`

Scope Subsystem- and system-level
Data exchange

Concern Non-functional

Models Informal
Semi-formal

Type Scenario-driven

Automation Level Manual

Stakeholders

Architects
Developers
Managers
Customers

49

Analysis Techniques Categories

Module 3 2024-25

• Model based Analysis:
• Analysis techniques that manipulate architectural description to

discover architectural properties
• Tool-driven, hence potentially less costly
• Typically useful for establishing “hard” architectural properties only

• Unable to capture design intent and rationale
• Usually focus on a single architectural aspect

• E.g., syntactic correctness, deadlock freedom, adherence to a
style

• Scalability may be an issue
• Techniques typically used in tandem to provide more complete

answers
50

Analysis Techniques Categories

Module 3 2024-25

• Model based Analysis:
Analysis Goals – consistency, compatibility, internal
correctness
Analysis Scope – any
Analysis Concern – structural, behavioral, interaction,
and possibly non-functional properties
Architectural Models – semi-formal and formal
Analysis Types – static
Automation Level – partially and fully automated
Stakeholders – mostly architects and developers

51

Analysis Techniques Categories

Module 3 2024-25

• Model based Analysis summery:
Goals

Consistency
Compatibility
Completeness (internal)

Scope

Component- and connector-level
Subsystem- and system-level
Data exchange
Different abstraction levels
Architecture comparison

Concern

Structural
Behavioral
Interaction
Non-functional

Models Semi-formal
Formal

Type Static

Automation Level Partially automated
Automated

Stakeholders

Architects
Developers
Managers
Customers

52

Analysis Techniques Categories

Module 3 2024-25

• Simulation based Analysis:
• Requires producing an executable system model
• Simulation need not exhibit identical behavior to system

implementation
• Many low-level system parameters may be unavailable

• It needs to be precise and not necessarily accurate
• Some architectural models may not be amenable to

simulation
• Typically require translation to a simulatable language

53

Analysis Techniques Categories

Module 3 2024-25

• Simulation based Analysis:

54

Analysis Techniques Categories

Module 3 2024-25

• Simulation based Analysis:
• Analysis Goals – any
• Analysis Scope – any
• Analysis Concern –behavioral, interaction, and non-

functional properties
• Architectural Models – formal
• Analysis Types – dynamic and scenario-based
• Automation Level – fully automated; model

mapping may be manual
• Stakeholders – any

55

Analysis Techniques Categories

Module 3 2024-25

• Simulation based Analysis summery:
Goals

Consistency
Compatibility
Correctness

Scope
Component- and connector-level
Subsystem- and system-level
Data exchange

Concern

Structural
Behavioral
Interaction
Non-functional

Models Formal

Type Dynamic
Scenario-based

Automation Level Automated

Stakeholders

Architects
Developers
Managers
Customers
Vendors

56

Designing for Non Functional Properties

• A software system’s non-functional property (NFP) is a constraint on
the manner in which the system implements and delivers its
functionality

• Example NFPs
• Efficiency
• Complexity
• Scalability
• Heterogeneity
• Adaptability
• Dependability
• Security, reliability, fault-tolerance

57Module 3 2024-25

Designing for FPs
• Any engineering product is sold based on its functional properties (FPs)

• TV set, DVD player, stereo, mobile telephone
• Providing the desired functionality is often quite challenging

• Market demands
• Competition
• Strict deadlines
• Limited budgets

• However, the system’s success will ultimately rest on its NFPs
• “This system is too slow!”
• “It keeps crashing!”
• “It has so many security holes!”
• “Every time I change this feature I have to reboot!”
• “I can’t get it to work with my home theater!”

58Module 3 2024-25

FPs vs. NFPs – An Example

• Microsoft Word 6.0
• Released in the 1990s
• Both for the PC and the Mac
• Roughly the same functionality
• It ran fine on the PC and was successful
• It was extremely slow on the Mac
• Microsoft “solved” the problem by charging customers for downgrades
• A lot of bad publicity

59Module 3 2024-25

FPs vs. NFPs – Another Example

• Linux – “as-documented” architecture

60
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Module 3 2024-25

FPs vs. NFPs – Another Example

• Linux – “as-implemented” architecture

61
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Module 3 2024-25

Challenges of Designing for NFPs

• Only partially understood in many domains
• E.g., MS Windows and security

• Qualitative vs. quantitative
• Frequently multi-dimensional
• Non-technical pressures

• E.g., time-to-market or functional features

62Module 3 2024-25

Design Guidelines for Ensuring NFPs

• Only guidelines, not laws or rules
• Promise but do not guarantee a given NFP
• Necessary but not sufficient for a given NFP
• Have many caveats and exceptions
• Many trade-offs are involved

63Module 3 2024-25

Overarching Objective

• Ascertain the role of software architecture in ensuring various NFPs
• At the level of major architectural building blocks

• Components
• Connectors
• Configurations

• As embodied in architectural style-level design guidelines

64Module 3 2024-25

Efficiency

• Efficiency is a quality that reflects a software system’s ability to meet
its performance requirements while minimizing its usage of the
resources in its computing environment

• Efficiency is a measure of a system’s resource usage economy

• What can software architecture say about efficiency?
• Isn’t efficiency an implementation-level property?

➢Efficiency starts at the architectural level!

65Module 3 2024-25

Software Components and Efficiency

• Keep the components “small” whenever possible
• Keep component interfaces simple and compact
• Allow multiple interfaces to the same functionality
• Separate data components from processing components
• Separate data from meta-data

66Module 3 2024-25

Multiple Interfaces to the Same Functionality

67
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Module 3 2024-25

Software Connectors and Efficiency

• Carefully select connectors
• Use broadcast connectors with caution
• Make use of asynchronous interaction whenever possible
• Use location/distribution transparency judiciously

68Module 3 2024-25

Distribution Transparency

69
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Module 3 2024-25

Architectural Configurations and Efficiency

• Keep frequently interacting components “close”
• Carefully select and place connectors in the architecture
• Consider the efficiency impact of selected architectural styles and

patterns

70Module 3 2024-25

Performance Penalty Induced by Distance

71
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Module 3 2024-25

NFP Design Techniques
Software Architecture

Lecture 20

Complexity

• IEEE Definition
• Complexity is the degree to which a software system or one of its

components has a design or implementation that is difficult to understand
and verify

• Complexity is a software system’s a property that is directly
proportional to the size of the system, number of its constituent
elements, their internal structure, and the number and nature of
their interdependencies

Module 3 2024-25 73

Software Components and Complexity

• Separate concerns into different components
• Keep only the functionality inside components

• Interaction goes inside connectors

• Keep components cohesive
• Be aware of the impact of off-the-shelf components on complexity
• Insulate processing components from changes in data format

Module 3 2024-25 74

Software Connectors and Complexity

• Treat connectors explicitly
• Keep only interaction facilities inside connectors
• Separate interaction concerns into different connectors
• Restrict interactions facilitated by each connector
• Be aware of the impact of off-the-shelf connectors on complexity

Module 3 2024-25 75

Architectural Configurations and Complexity

• Eliminate unnecessary dependencies
• Manage all dependencies explicitly
• Use hierarchical (de)composition

Module 3 2024-25 76

Complexity in Linux

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.
Module 3 2024-25 77

Scalability and Heterogeneity

• Scalability is the capability of a software system to be adapted to meet new requirements of size
and scope

• Heterogeneity is the quality of a software system consisting of multiple disparate constituents or
functioning in multiple disparate computing environments

• Heterogeneity is a software system’s ability to consist of multiple disparate constituents or
function in multiple disparate computing environments

• Portability is a software system’s ability to execute on multiple platforms with minimal
modifications and without significant degradation in functional or non-functional
characteristics

Module 3 2024-25 78

Software Components and Scalability

• Give each component a single, clearly defined purpose
• Define each component to have a simple, understandable interface
• Do not burden components with interaction responsibilities
• Avoid unnecessary heterogeneity

• Results in architectural mismatch

• Distribute the data sources
• Replicate data when necessary

Module 3 2024-25 79

Software Connectors and Scalability

• Use explicit connectors
• Give each connector a clearly defined responsibility
• Choose the simplest connector suited for the task
• Be aware of differences between direct and indirect dependencies
• Avoid placing application functionality inside connectors

• Application functionality goes inside components

• Leverage explicit connectors to support data scalability

Module 3 2024-25 80

Architectural Configurations and Scalability

• Avoid system bottlenecks
• Make use of parallel processing capabilities
• Place the data sources close to the data consumers
• Try to make distribution transparent
• Use appropriate architectural styles

Module 3 2024-25 81

Adaptability

• Adaptability is a software system’s ability to satisfy new requirements
and adjust to new operating conditions during its lifetime

Module 3 2024-25 82

Software Components and Adaptability

• Give each component a single, clearly defined purpose
• Minimize component interdependencies
• Avoid burdening components with interaction responsibilities
• Separate processing from data
• Separate data from metadata

Module 3 2024-25 83

Software Connectors and Adaptability

• Give each connector a clearly defined responsibility
• Make the connectors flexible
• Support connector composability

Module 3 2024-25 84

Composable Connectors

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.
Module 3 2024-25 85

Architectural Configurations and Adaptability

• Leverage explicit connectors
• Try to make distribution transparent
• Use appropriate architectural styles

Module 3 2024-25 86

Dependability
• Dependability is a collection of system properties that allows one to rely on a system functioning

as required
• Reliability is the probability that a system will perform its intended functionality under

specified design limits, without failure, over a given time period
• Availability is the probability that a system is operational at a particular time
• Robustness is a system’s ability to respond adequately to unanticipated runtime conditions
• Fault-tolerant is a system’s ability to respond gracefully to failures at runtime
• Survivability is a system’s ability to resist, recognize, recover from, and adapt to mission-

compromising threats
• Safety denotes the ability of a software system to avoid failures that will result in (1) loss of

life, (2) injury, (3) significant damage to property, or (4) destruction of property

Module 3 2024-25 87

Software Components and Dependability

• Carefully control external component inter-dependencies
• Provide reflection capabilities in components
• Provide suitable exception handling mechanisms
• Specify the components’ key state invariants

Module 3 2024-25 88

Software Connectors and Dependability

• Employ connectors that strictly control component dependencies
• Provide appropriate component interaction guarantees
• Support dependability techniques via advanced connectors

Module 3 2024-25 89

Architectural Configurations and Dependability

• Avoid single points of failure
• Provide back-ups of critical functionality and data
• Support non-intrusive system health monitoring
• Support dynamic adaptation

Module 3 2024-25 90

	Slide 1: Software Architecture and Design Thinking 116U01C701
	Slide 2: Modelling, Analysis
	Slide 3: 3.1 Modeling Concepts
	Slide 4: Architectural Modelling
	Slide 5: Choose What to Model
	Slide 6: Stakeholder-Driven Modelling
	Slide 7: What to Model
	Slide 8: What do we model
	Slide 9: What do we model
	Slide 10: What do we Model
	Slide 11: Important Characteristics of Models
	Slide 12: Accuracy v/s Precision
	Slide 13: 3.2 Views and Viewpoints
	Slide 14: Views and View-point
	Slide 15: Commonly-Used Viewpoints
	Slide 16: Commonly-Used Viewpoints
	Slide 17: Consistency Among Views
	Slide 18: Common Types of Inconsistencies
	Slide 19: Analysis Goals
	Slide 20: Architectural Analysis Goals
	Slide 21: Architectural Analysis Goals – Completeness
	Slide 22: Architectural Analysis Goals – Consistency
	Slide 23: Name Consistency
	Slide 24: Interface Consistency
	Slide 25: Behavioral Consistency
	Slide 26: Interaction Consistency
	Slide 27: Refinement Consistency
	Slide 28: Refinement Consistency Example
	Slide 29: Compatibility
	Slide 30: Correctness
	Slide 31: Scope of Analysis
	Slide 32: Data Exchange Example
	Slide 33: Architectural Concern Being Analyzed
	Slide 34: 3.3 Level of Formality
	Slide 35: Type of Analysis
	Slide 36: Type of Analysis
	Slide 37: Level of Automation
	Slide 38: 3.3 Analysis Techniques
	Slide 39: Analysis Techniques Categories
	Slide 40: Analysis Techniques Categories
	Slide 41: Analysis Techniques Categories
	Slide 42: Analysis Techniques Categories
	Slide 43: Analysis Techniques Categories
	Slide 44: Analysis Techniques Categories
	Slide 45: Analysis Techniques Categories
	Slide 46: Analysis Techniques Categories
	Slide 47: Analysis Techniques Categories
	Slide 48: Analysis Techniques Categories
	Slide 49: Analysis Techniques Categories
	Slide 50: Analysis Techniques Categories
	Slide 51: Analysis Techniques Categories
	Slide 52: Analysis Techniques Categories
	Slide 53: Analysis Techniques Categories
	Slide 54: Analysis Techniques Categories
	Slide 55: Analysis Techniques Categories
	Slide 56: Analysis Techniques Categories
	Slide 57: Designing for Non Functional Properties
	Slide 58: Designing for FPs
	Slide 59: FPs vs. NFPs – An Example
	Slide 60: FPs vs. NFPs – Another Example
	Slide 61: FPs vs. NFPs – Another Example
	Slide 62: Challenges of Designing for NFPs
	Slide 63: Design Guidelines for Ensuring NFPs
	Slide 64: Overarching Objective
	Slide 65: Efficiency
	Slide 66: Software Components and Efficiency
	Slide 67: Multiple Interfaces to the Same Functionality
	Slide 68: Software Connectors and Efficiency
	Slide 69: Distribution Transparency
	Slide 70: Architectural Configurations and Efficiency
	Slide 71: Performance Penalty Induced by Distance
	Slide 72: NFP Design Techniques
	Slide 73: Complexity
	Slide 74: Software Components and Complexity
	Slide 75: Software Connectors and Complexity
	Slide 76: Architectural Configurations and Complexity
	Slide 77: Complexity in Linux
	Slide 78: Scalability and Heterogeneity
	Slide 79: Software Components and Scalability
	Slide 80: Software Connectors and Scalability
	Slide 81: Architectural Configurations and Scalability
	Slide 82: Adaptability
	Slide 83: Software Components and Adaptability
	Slide 84: Software Connectors and Adaptability
	Slide 85: Composable Connectors
	Slide 86: Architectural Configurations and Adaptability
	Slide 87: Dependability
	Slide 88: Software Components and Dependability
	Slide 89: Software Connectors and Dependability
	Slide 90: Architectural Configurations and Dependability

