Software Architecture and
Design Thinking
116U01C701

Module 3

3.1
3.2

3.3

3.4

Modelling, Analysis

Modeling Concepts, Ambiguity, Accuracy, and Precision

Complex Modelling: Mixed Content and Multiple Views. Analysis
Goals, Scope of Analysis, Architectural Concern being Analysed,

Level of Formality of Architectural Models, Type of Analysis,
Analysis Techniques

Designing for Non-Functional Properties and implementation

Module 3 2024-25

3.1 Modeling Concepts

Concepts :

* What is modeling?
* How do we choose what to model?
* What kinds of things do we model?

ow can we characterize models?
ow can we break up and organize models?
ow can we evaluate models and modeling notations?

Module 3 2024-25

Architectural Modelling

Architectures are characterized as the set of principal design
decisions made about a system

* We can define models and modeling in those terms

An architectural model is an artifact that captures some or all of
the design decisions that comprise a system’s architecture

Architectural modeling is the reification (presenting abstract idea)
and documentation of those design decisions

* How we model is strongly influenced by the notations we
choose:

An architectural modeling notation is a language or means of
capturing design decisions.

Choose What to Model

Architects and other stakeholders must make critical decisions:

 What architectural decisions and concepts should be modeled
* At what level of detail
* With how much rigor or formality

* These are cost/benefit decisions

* The benefits of creating and maintaining an architectural model must
exceed the cost of doing so

Module 3 2024-25 5

Stakeholder-Driven Modelling

0,\ QQ/ QQ) Qb‘ 0(0 . .
e} oe} (\0@‘ oe} c;z} * Stakeholders identify aspects of the
OO

system they are concerned about

* Modeling depth should roughly
mirror the relative importance of
concerns

e Stakeholders decide the relative
importance of these concerns

Module 3 2024-25 6

What to Model

Basic architectural elements

Component
Connectors
Interface
Configuratic

Ra inaI — renin pehind decisions

[% ;
Get BurnRate A ; , Compute new | _ Display new
fromuser o oweam L—lm o e [FB1 Steam [1—Blo) 05 t0 user
in: br in:a, ftv
out: none out: none

Module 3 2024-25

What do we mode|

Elements of the architectural style

Inclusion of specific basic elements (e.g., components,
connectors, interfaces)

Component, connector, and interface types
Constraints on interactions

Behavioral constraints

Concurrency constraints

What do we model

Static and Dynamic Aspects
Static aspects of a system do not change as a system runs

e.g., topologies, assighment of components/connectors to
hosts, ...

Dynamic aspects do change as a system runs

e.g., State of individual components or connectors, state of a
data flow through a system, ...

This line is often unclear

Consider a system whose topology is relatively stable but
changes several times during system startup

What do we Model

Functional and non-functional aspects of a system
Functional

“The system prints medical records”
Non-functional

“The system prints medical records quickly and
confidentially.”

Architectural models tend to be functional, but like rationale

it is often important to capture non-functional decisions

even if they cannot be automatically or deterministically
interpreted or analyzed

Important Characteristics of Models

Ambiguity

A model is ambiguous if it is open to more than one
Interpretation

Accuracy and Precision
Different, but often conflated concepts

A model is accurate if it is correct, conforms to fact,
or deviates from correctness within acceptable limits

A model is precise if it is sharply exact or delimited

Inaccurate and
imprecise:
incoherent or
contradictory
assertions

Inaccurate but
precise:
detailed

assertions that

are wrong

Accuracy Vv/s Precision

(a) (b)
IS
RyAA
(c) (d)

Module 3 2024-25

Accurate but
imprecise:
ambiguous or
shallow
assertions

Accurate and
precise:
detailed

assertions that

are correct

12

3.2 Views and Viewpoints

Generally, it is not feasible to capture everything we want to model
in a single model or document

The model would be too big, complex, and confusing

So, we create several coordinated models, each capturing a subset of
the design decisions

Generally, the subset is organized around a particular concern or
other selection criteria

We call the subset-model a ‘view’ and the concern (or criteria) a
‘viewpoint’

Module 3 2024-25 13

Server

Views and View-point

Data
Store

Client

— L

Connector

—

Client
Logic

Business
Logic

— L

Connector

S

Client GUI

Deployment view of a 3-tier application

Instance of a view is view-point

Module 3 2024-25

14

Commonly-Used Viewpoints

Logical Viewpoints

Capture the logical (often software) entities in a system
and how they are interconnected.

Physical Viewpoints

Capture the physical (often hardware) entities in a system
and how they are interconnected.

Deployment Viewpoints

Capture how logical entities are mapped onto physical
entities.

Commonly-Used Viewpoints

Concurrency Viewpoints

Capture how concurrency and threading will be
managed in a system.

Behavioral Viewpoints
Capture the expected behavior of (parts of) a system.

Module 3 2024-25

16

Consistency Among Views

Views can contain overlapping and related design decisions

There is the possibility that the views can thus become
inconsistent with one another

Views are consistent if the design decisions they contain are
compatible

Views are inconsistent if two views assert design decisions that
cannot simultaneously be true

Inconsistency is usually but not always indicative of problems

Temporary inconsistencies are a natural part of exploratory
design

Inconsistencies cannot always be fixed

Module 3 2024-25 17

Common Types of Inconsistencies

* Direct inconsistencies

E.g., “The system runs on two hosts” and “the system runs on
three hosts.”

* Refinement inconsistencies

* High-level (more abstract) and low-level (more concrete) views of the same
parts of a system conflict

* Static vs. dynamic aspect inconsistencies

* Dynamic aspects (e.g., behavioral specifications) conflict with static aspects
(e.g., topologies)

* Dynamic vs. dynamic aspect inconsistencies
» Different descriptions of dynamic aspects of a system conflict

* Functional vs. non-functional inconsistencies

Module 3 2024-25

18

Analysis Goals

e Goals may include early estimation of system size, complexity, cost
» Adherence of architectural model to design guidelines and constraints
e Satisfaction of system functional and non functional requirements

* Assessment of the implemented system ‘s correctness with respect
to it’s documented architecture

e Evaluation of opportunities for reusing existing functionality when
implementing parts of the modelled system

Architectural Analysis Goals

e The four “C”s

e Completeness
* Consistency

* Compatibility
* Correctness

Module 3 2024-25

20

Architectural Analysis Goals — Completeness

 Completeness is both an external and an internal goal

* It is external with respect to system requirements

* Challenged by the complexity of large systems’ requirements and
architectures

* Challenged by the many notations used to capture complex requirements as
well as architectures

* It is internal with respect to the architectural intent and modeling
notation

* Have all elements been fully modeled in the notation?
* Have all design decisions been properly captured?

Module 3 2024-25 21

Architectural Analysis Goals — Consistency

e Consistency is an internal property of an architectural model

 Ensures that different model elements do not contradict one
another

* Dimensions of architectural consistency
* Name
* Interface
* Behavior
* Interaction
e Refinement

Module 3 2024-25

Name Consistency

* Component and connector names

 Component service names

* May be non-trivial to establish at the architectural level
* Multiple system elements/services with identical names
* Loose coupling via publish-subscribe or asynchronous event broadcast

* Dynamically adaptable architectures

Module 3 2024-25

23

Interface Consistency

* Encompasses name consistency

* Also involves parameter lists in component services
* A rich spectrum of choices at the architectural level
* Example: matching provided and required interfaces

RegInt: getSubQ (Natural first, Natural last,

returns FIFOQueue;

ProvIntl: getSubQ(Index first, Index last)

returns FIFOQueue;

ProvInt2: getSubQ (Natural first, Natural last,

returns Queue;

Module 3 2024-25

Boolean remove)

Boolean remove)

24

Behavioral Consistency

 Names and interfaces of interacting components may match, but behaviors need not
* Example: subtraction

subtract (Integer x, Integer y) returns Integer;

e Can we be sure what the subtract operation does?
* Example: QueueClient and QueueServer components

QueueClient

precondition g.size > 0;

postcondition ~g.size = g.size;

QueueServer

precondition g.size > 1;

postcondition ~g.size = g.size - 1;

Module 3 2024-25

Interaction Consistency

 Names, interfaces, and behaviors of interacting components
may match, yet they may still be unable to interact properly

* Example: QueueClient and QueueServer components

enqueue
[g.size < g.max — 1]

enqueue enqueus
q m [q.size = g.max — 1]

dequeue K j
[q.size = 1] dequeue

dequeue
[q-size = 1]

Module 3 2024-25 26

Refinement Consistency

* Architectural models are refined during the design process

* A relationship must be maintained between higher and lower level
models
* All elements are preserved in the lower level model
* All design decisions are preserved in the lower-level model
* No new design decisions violate existing design decisions

Module 3 2024-25

27

Refinement Consistency Example

File System

Interface

—-_—— - - Duct N = S
. . ~, .
- - >, ~ . ~.
Dats Acqfs - o The scheduleras a connectos
Interrupt ‘s“ T e e B4 > :P\pp:::non
sssm—— Procedure call :_Ke-rnel _: -

Application
| Process

s e wae

Module 3 2024-25

Applhication
-.

New
Application
Process

28

Compatibility

 Compatibility is an external property of an architectural model

* Ensures that the architectural model adheres to guidelines and
constraints of

e astyle
e a reference architecture
e an architectural standard

Module 3 2024-25

29

Correctness

Correctness is an external property of an architectural model

Ensures that
1. the architectural model fully realizes a system specification
2. the system’s implementation fully realizes the architecture

Inclusion of OTS elements impacts correctness

 System may include structural elements, functionality, and non-functional
properties that are not part of the architecture

e The notion of is key to ensuring architectural correctness

Module 3 2024-25

30

Scope of Analysis

Component- and connector-level Analysis
 Component-application dependent
* Connector-application independent

Subsystem- and system-level
* System is collection of components and connectors
* Beware of the “honey-baked ham” syndrome

Data exchanged in a system or subsystem
e Data structure — types or untyped, discrete or streamed
Data flow — point to point or broadcast
Properties of data exchange-consistency, security and latency
Data is properly modeled implemented and exchanged
Web application, e-commerce and multimedia

Architectures at different abstraction levels

Comparison of two or more architectures
* Processing

Data

Interaction

Configuration

Non-functional properties

Module 3 2024-25

31

Data Exchange Example

Producer
<data frequency: 1 Mbps=>

:

| Multicast Connector |

l l

Consumer 1 Consumer 2
<data frequency: 2 Mbps> <data frequency: 500 Kbps>

Module 3 2024-25

32

Architectural Concern Being Analyzed

 Structural characteristics

* Behavioral characteristics

* Interaction characteristics

* Non-functional characteristics

Module 3 2024-25

33

3.3 Level of Formality

* Informal models
* Semi-formal models
* Formal models

Module 3 2024-25

34

Type of Analysis

e Static analysis:

* Inferring the properties of a software system from one or more of its models
without actually executing those models.

e E.g. syntactic analysis (checks only if the syntax is right, used appropriate
notations, use of architectural description language, design diagram
notations)

* Can be automated by compilation or manual by inspection
* Dynamic analysis:
* Involves actual execution or simulation of a model
* Performed only after semantic analysis (static)

 State transition diagram

e Scenario-driven analysis
* Can be both static and dynamic

Type of Analysis

* Scenario based Analysis

 Difficult to analyze big complex system
* Use case based analysis
* May contain both static and Dynamic

Module 3 2024-25

36

Level of Automation

* Manual — significant human involvement
 Partially Automated — Tools and Human
e Fully Automated - Tools

Architectural
Analysis

Goals

——— Scope

Concerns

3.3 Analysis Techniques

Completeness
Consistency

Name
Interface
Behavior
Interaction
Refinement

Compatibility
Correctness

Component- and connector-level
Subsystem- and system-level
Data exchange

Different abstraction levels
Architecture comparison

Structural
Behavioral
Interaction
Non-functional

Models
Informal
Semi-formal
Formal
— Type
Static
—— Dynamic

Module 3 2024-25

Scenario-based

Automation Level

Manual
Partially automated
Automated

Stakeholders

Architects
Developers
Managers
Customers
Vendors

38

Analysis Techniques Categories

Inspection- and review-based:
Model-based
Simulation-based

Module 3 2024-25

39

Analysis Techniques Categories

* Inspection- and review-based:

Architectural models studied by human stakeholders for
specific properties

The stakeholders define analysis objective

Can fulfill any of the four Goals - Cs

Manual techniques

* (Can be expensive

Useful in the case of informal architectural descriptions
Useful in establishing “soft” system properties

* E.g., scalability or adaptability

Able to consider multiple stakeholders’ objectives and

Module 3 2024-

multiple architectural properties

40

Analysis Techniques Categories

* Inspection- and review covers:

Analysis Goals — any

Analysis Scope — any

Analysis Concern — any, but particularly suited for non-
functional properties

Architectural Models —any, but must be geared to
stakeholder needs and analysis objectives

Analysis Types — mostly static and scenario-based
Automation Level — manual, human intensive
Stakeholders —any, except perhaps component vendors

Module 3 2024-25 41

Analysis Techniques Categories

* Architectural Trade-off Analysis Method (ATAM) :

Human-centric process for identifying risks early on in software
design

Focuses specifically on four quality attributes (NFPs)
 Modifiability

* Security
 Performance
* Reliability

Reveals how well an architecture satisfies quality goals and how
those goals trade-off

Module 3 2024-25 43

Analysis Techniques Categories

* Architectural Trade-off Analysis Method (ATAM) :

Analysis

Business Quality | Scenarios
Drivers | - Attributes
Software Architectural Architectural

Architecture Approaches Decisions
impacts Trade-offs
Sensitivity

Points
Non-Risks

distilled into
Risk Themes |= Risks

Module 3 2024-25

44

Analysis Techniques Categories

* ATAM Business Drivers :

The system’s critical functionality

Any technical, managerial, economic, or political
constraints

The project’s business goals and context

The major stakeholders

The principal quality attribute (NFP) goals

Module 3 2024-25

45

Analysis Techniques Categories
* ATAM Scenarios:

e Use-case scenarios

Describe how the system is envisioned by the stakeholders to be
used

e Growth scenarios
Describe planned and envisioned modifications to the architecture
e Exploratory scenarios

Try to establish the limits of architecture’s adaptability with respect
to

e system’s functionality
e operational profiles
e underlying execution platforms

Scenarios are prioritized based on importance to stakeholders

Module 3 2024-25 46

Analysis Techniques Categories

* Project Architects presenting key facet of the
architecture:

* Technical constraints
* Required hardware platforms, OS, middleware,
programming languages, and OTS functionality
* Any other systems with which the system must interact
* Architectural approaches that have been used to meet the
qguality requirements
 Sets of architectural design decisions employed to solve
a problem
* Typically architectural patterns and styles

47

Analysis Techniques Categories

 ATAM Analysis:

Key step in ATAM
Objective is to establish relationship between architectural
approaches and quality attributes

For each architectural approach a set of analysis questions are
formulated

* Targeted at the approach and quality attributes in question
System architects and ATAM evaluation team work together to answer
these questions and identify

* Risks = these are distilled into risk themes

* Non-Risks

* Sensitivity points

* Trade-off points

Based on answers, further analysis may be performed

e 3 2024-25 48

Analysis Techniques Categories

 ATAM summary:

Completeness
Consistency
Goals Compatibility
Correctness
Scone Subsystem- and system-level
P Data exchange
Concern Non-functional
Models Infomal
Semi-formal
Type Scenario-driven
Automation Level | Manual
Architects
Stakeholders Developers
Managers

Customers

IViodule 3 2024-25

49

Analysis Techniques Categories

* Model based Analysis:

Analysis techniques that manipulate architectural description to
discover architectural properties
Tool-driven, hence potentially less costly
Typically useful for establishing “hard” architectural properties only
 Unable to capture design intent and rationale
Usually focus on a single architectural aspect
* E.g., syntactic correctness, deadlock freedom, adherence to a
style
Scalability may be an issue
Techniques typically used in tandem to provide more complete
answers

Module 3 2024-25 50

Analysis Techniques Categories

* Model based Analysis:

Analysis Goals — consistency, compatibility, internal
correctness

Analysis Scope — any

Analysis Concern — structural, behavioral, interaction,
and possibly non-functional properties

Architectural Models —semi-formal and formal
Analysis Types — static

Automation Level — partially and fully automated
Stakeholders — mostly architects and developers

Module 3 2024-25 51

Analysis Techniques Categories
* Model based Analysis summery:

Consistency
Goals Compatibility
Completeness (internal)

Component- and connector-level
Subsystem- and system-level
Scope Data exchange

Different abstraction levels
Architecture comparison

Structural
Behavioral
Interaction
Non-functional

Concern

Semi-formal

Models Formal

Type Static

Partially automated

Aut tion Level
utomation Leve Automated

Architects
Developers
Managers
Customers

Stakeholders

Module 3 2024-25

Analysis Techniques Categories

* Simulation based Analysis:

* Requires producing an executable system model
e Simulation need not exhibit identical behavior to system
implementation
* Many low-level system parameters may be unavailable
* |t needs to be precise and not necessarily accurate
* Some architectural models may not be amenable to

simulation
* Typically require translation to a simulatable language

Module 3 2024-25

53

Analysis Techniques Categories

* Simulation based Analysis:

-

Architectural Models
(PowerPoint, Wright, Rapide, Darwin,
xADL, Weaves, C2SADEL, UniCon...)

mapping may not
be necessary

Simulation models and environments
(StateMate, Matlab/Simulink, Adevs, Emulab...)

\‘___\\:___\\:..___\\‘..___\\\.\\\\\\\

Runtime platform

Vs

Module 3 2024-25

Analysis Techniques Categories

* Simulation based Analysis:

Analysis Goals — any

Analysis Scope — any

Analysis Concern —behavioral, interaction, and non-
functional properties

Architectural Models — formal

Analysis Types —dynamic and scenario-based
Automation Level —fully automated; model
mapping may be manual

Stakeholders —any

Module 3 2024-25 55

Analysis Techniques Categories
* Simulation based Analysis summery:

Consistency
Goals Compatibility
Correctness

Component- and connector-level
Scope Subsystem- and system-level
Data exchange

Structural
Behavioral
Interaction
Non-functional

Concern

Models Formal

Dynamic

Type Scenario-based

Automation Level Automated

Architects
Developers
Stakeholders Managers
Customers
Vendors

Module 3 2024-25

Designing for Non Functional Properties

* A software system’s is a constraint on
the manner in which the system implements and delivers its
functionality

* Example NFPs
* Efficiency
* Complexity
 Scalability
* Heterogeneity
Adaptability
Dependability
Security, reliability, fault-tolerance

Designing for FPs

* Any engineering product is sold based on its functional properties (FPs)
* TV set, DVD player, stereo, mobile telephone

* Providing the desired functionality is often quite challenging
* Market demands
* Competition
 Strict deadlines
* Limited budgets

* However, the system’s success will ultimately rest on its NFPs
* “This system is too slow!”
* “It keeps crashing!”
* “It has so many security holes!”
* “Every time | change this feature | have to reboot!”
* “l can’t get it to work with my home theater!”

58

FPs vs. NFPs — An Example

* Microsoft Word 6.0
* Released in the 1990s
* Both for the PC and the Mac
Roughly the same functionality
It ran fine on the PC and was successful
It was extremely slow on the Mac
Microsoft “solved” the problem by charging customers for downgrades
A lot of bad publicity

FPs vs. NFPs — Another Example

e Linux — “as-documented” architecture

File System

Network
Imterface

Inter-Process
Communications

wht. N

Intialization Library

Module@@®024-25
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with pemission.

FPs vs. NFPs — Another Example

* Linux — “as-implemented” architecture

Network

' Interfacs

Inter-Process
muncabons

Meaemory

Manager h~

Process
Scheduler

| Initialization - Library

Module@$024-25
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Challenges of Designing for NFPs

* Only partially understood in many domains
* E.g., MS Windows and security

e Qualitative vs. quantitative
* Frequently multi-dimensional

* Non-technical pressures
* E.g., time-to-market or functional features

62

Design Guidelines for Ensuring NFPs

* Only guidelines, not laws or rules

* Promise but do not guarantee a given NFP
* Necessary but not sufficient for a given NFP
* Have many caveats and exceptions

* Many trade-offs are involved

63

Overarching Objective

» Ascertain the role of software architecture in ensuring various NFPs

* At the level of major architectural building blocks
* Components
* Connectors
* Configurations

* As embodied in architectural style-level design guidelines

64

Efficiency

is a quality that reflects a software system’s ability to meet
its performance requirements while minimizing its usage of the
resources in its computing environment

o Efficiency is a measure of a system'’s resource usage economy

* What can software architecture say about efficiency?
* Isn’t efficiency an implementation-level property?

65

Software Components and Efficiency

* Keep the components “small” whenever possible

* Keep component interfaces simple and compact

* Allow multiple interfaces to the same functionality

* Separate data components from processing components
e Separate data from meta-data

66

Multiple Interfaces to the Same Functionality

Component
A

Component

e

AdaptorWrapper

>Com%onem

Component
A

Module®2024-25
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

omponent

Software Connectors and Efficiency

e Carefully select connectors

* Use broadcast connectors with caution

* Make use of asynchronous interaction whenever possible
* Use location/distribution transparency judiciously

68

Distribution Transparency

A) -

Address Space 1

Component

B) ———

Y L 4
Component Component
8 C

Address 2 Address 3

Module@®024-25
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Architectural Configurations and Efficiency

* Keep frequently interacting components “close”
 Carefully select and place connectors in the architecture

e Consider the efficiency impact of selected architectural styles and
patterns

Performance Penalty Induced by Distance

Supervisor

Globszl Planning

e B

Navigation

Real-World Modeling

Sensor Integration

Sensor Interpratation

Environment

N mm———

Module®P024-25
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

NFP Design Techniques

Software Architecture
Lecture 20

Complexity

e |[EEE Definition

is the degree to which a software system or one of its
components has a design or implementation that is difficult to understand
and verify

is a software system’s a property that is directly
proportional to the size of the system, number of its constituent
elements, their internal structure, and the number and nature of
their interdependencies

Software Components and Complexity

e Separate concerns into different components

* Keep only the functionality inside components
* Interaction goes inside connectors

* Keep components cohesive
* Be aware of the impact of off-the-shelf components on complexity
* Insulate processing components from changes in data format

Software Connectors and Complexity

* Treat connectors explicitly

* Keep only interaction facilities inside connectors

e Separate interaction concerns into different connectors

e Restrict interactions facilitated by each connector

* Be aware of the impact of off-the-shelf connectors on complexity

Architectural Configurations and Complexity

* Eliminate unnecessary dependencies
* Manage all dependencies explicitly
* Use hierarchical (de)composition

Complexity in Linux

File System

Network
Interface

Scheduler

J
I Initizlization F

Inter-Process
Communications

wkt/~ NN

I Initialization ' I Library |

Module 3 2024-25 77
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Scalability and Heterogeneity

is the capability of a software system to be adapted to meet new requirements of size
and scope

is the quality of a software system consisting of multiple disparate constituents or
functioning in multiple disparate computing environments

is a software system’s ability to consist of multiple disparate constituents or
function in multiple disparate computing environments

is a software system’s ability to execute on multiple platforms with minimal
modifications and without significant degradation in functional or non-functional
characteristics

Software Components and Scalability

* Give each component a single, clearly defined purpose
* Define each component to have a simple, understandable interface
* Do not burden components with interaction responsibilities

* Avoid unnecessary heterogeneity
e Results in architectural mismatch

 Distribute the data sources
* Replicate data when necessary

Software Connectors and Scalability

e Use explicit connectors

e Give each connector a clearly defined responsibility

* Choose the simplest connector suited for the task

* Be aware of differences between direct and indirect dependencies

* Avoid placing application functionality inside connectors
e Application functionality goes inside components

* Leverage explicit connectors to support data scalability

Architectural Configurations and Scalability

* Avoid system bottlenecks

* Make use of parallel processing capabilities

* Place the data sources close to the data consumers
* Try to make distribution transparent

e Use appropriate architectural styles

Adaptability

is a software system’s ability to satisfy new requirements
and adjust to new operating conditions during its lifetime

Software Components and Adaptability

* Give each component a single, clearly defined purpose

* Minimize component interdependencies

* Avoid burdening components with interaction responsibilities
* Separate processing from data

e Separate data from metadata

Software Connectors and Adaptability

* Give each connector a clearly defined responsibility
* Make the connectors flexible
e Support connector composability

Composable Connectors

Compl [Comp3

]

ORB

NI TTIVITITTIVITTITIVITTTIVITTTTTIVITTTTIVTITT

AALRRRLY

Module 3 2024-25
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with pemission.

85

Architectural Configurations and Adaptability

* Leverage explicit connectors
* Try to make distribution transparent
* Use appropriate architectural styles

Dependability

* Dependability is a collection of system properties that allows one to rely on a system functioning
as required

is the probability that a system will perform its intended functionality under
specified design limits, without failure, over a given time period

is the probability that a system is operational at a particular time
is a system’s ability to respond adequately to unanticipated runtime conditions
is a system’s ability to respond gracefully to failures at runtime

is a system’s ability to resist, recognize, recover from, and adapt to mission-
compromising threats

denotes the ability of a software system to avoid failures that will result in (1) loss of
life, (2) injury, (3) significant damage to property, or (4) destruction of property

Software Components and Dependability

 Carefully control external component inter-dependencies
* Provide reflection capabilities in components

* Provide suitable exception handling mechanisms

» Specify the components’ key state invariants

Software Connectors and Dependability

* Employ connectors that strictly control component dependencies
* Provide appropriate component interaction guarantees
e Support dependability techniques via advanced connectors

Architectural Configurations and Dependability

* Avoid single points of failure

* Provide back-ups of critical functionality and data
e Support non-intrusive system health monitoring
e Support dynamic adaptation

	Slide 1: Software Architecture and Design Thinking 116U01C701
	Slide 2: Modelling, Analysis
	Slide 3: 3.1 Modeling Concepts
	Slide 4: Architectural Modelling
	Slide 5: Choose What to Model
	Slide 6: Stakeholder-Driven Modelling
	Slide 7: What to Model
	Slide 8: What do we model
	Slide 9: What do we model
	Slide 10: What do we Model
	Slide 11: Important Characteristics of Models
	Slide 12: Accuracy v/s Precision
	Slide 13: 3.2 Views and Viewpoints
	Slide 14: Views and View-point
	Slide 15: Commonly-Used Viewpoints
	Slide 16: Commonly-Used Viewpoints
	Slide 17: Consistency Among Views
	Slide 18: Common Types of Inconsistencies
	Slide 19: Analysis Goals
	Slide 20: Architectural Analysis Goals
	Slide 21: Architectural Analysis Goals – Completeness
	Slide 22: Architectural Analysis Goals – Consistency
	Slide 23: Name Consistency
	Slide 24: Interface Consistency
	Slide 25: Behavioral Consistency
	Slide 26: Interaction Consistency
	Slide 27: Refinement Consistency
	Slide 28: Refinement Consistency Example
	Slide 29: Compatibility
	Slide 30: Correctness
	Slide 31: Scope of Analysis
	Slide 32: Data Exchange Example
	Slide 33: Architectural Concern Being Analyzed
	Slide 34: 3.3 Level of Formality
	Slide 35: Type of Analysis
	Slide 36: Type of Analysis
	Slide 37: Level of Automation
	Slide 38: 3.3 Analysis Techniques
	Slide 39: Analysis Techniques Categories
	Slide 40: Analysis Techniques Categories
	Slide 41: Analysis Techniques Categories
	Slide 42: Analysis Techniques Categories
	Slide 43: Analysis Techniques Categories
	Slide 44: Analysis Techniques Categories
	Slide 45: Analysis Techniques Categories
	Slide 46: Analysis Techniques Categories
	Slide 47: Analysis Techniques Categories
	Slide 48: Analysis Techniques Categories
	Slide 49: Analysis Techniques Categories
	Slide 50: Analysis Techniques Categories
	Slide 51: Analysis Techniques Categories
	Slide 52: Analysis Techniques Categories
	Slide 53: Analysis Techniques Categories
	Slide 54: Analysis Techniques Categories
	Slide 55: Analysis Techniques Categories
	Slide 56: Analysis Techniques Categories
	Slide 57: Designing for Non Functional Properties
	Slide 58: Designing for FPs
	Slide 59: FPs vs. NFPs – An Example
	Slide 60: FPs vs. NFPs – Another Example
	Slide 61: FPs vs. NFPs – Another Example
	Slide 62: Challenges of Designing for NFPs
	Slide 63: Design Guidelines for Ensuring NFPs
	Slide 64: Overarching Objective
	Slide 65: Efficiency
	Slide 66: Software Components and Efficiency
	Slide 67: Multiple Interfaces to the Same Functionality
	Slide 68: Software Connectors and Efficiency
	Slide 69: Distribution Transparency
	Slide 70: Architectural Configurations and Efficiency
	Slide 71: Performance Penalty Induced by Distance
	Slide 72: NFP Design Techniques
	Slide 73: Complexity
	Slide 74: Software Components and Complexity
	Slide 75: Software Connectors and Complexity
	Slide 76: Architectural Configurations and Complexity
	Slide 77: Complexity in Linux
	Slide 78: Scalability and Heterogeneity
	Slide 79: Software Components and Scalability
	Slide 80: Software Connectors and Scalability
	Slide 81: Architectural Configurations and Scalability
	Slide 82: Adaptability
	Slide 83: Software Components and Adaptability
	Slide 84: Software Connectors and Adaptability
	Slide 85: Composable Connectors
	Slide 86: Architectural Configurations and Adaptability
	Slide 87: Dependability
	Slide 88: Software Components and Dependability
	Slide 89: Software Connectors and Dependability
	Slide 90: Architectural Configurations and Dependability

