
Software Architecture and
Design Thinking

116U01C701

Module 2

Module 2: Connectors

2.1 Connector Foundations, Connector
Roles

2.2 Connector Types and Their Variation
Dimensions

Module 2: Connectors 2

Connectors
What is a Software Connector?
• Architectural element that models

• Interactions among components
• Rules that govern those interactions

• Simple interactions
• Procedure calls
• Shared variable access

• Complex & semantically rich interactions
• Client-server protocols
• Database access protocols
• Asynchronous event multicast

• Each connector provides
• Interaction duct(s)
• Transfer of control and/or data

Module 2: Connectors 3

Where are Connectors in Software Systems?

Module 2: Connectors 4

Implemented vs. Conceptual Connectors

• Connectors in software system implementations
• Frequently no dedicated code

• Frequently no identity

• Typically do not correspond to compilation units

• Distributed implementation
• Across multiple modules

• Across interaction mechanisms

Module 2: Connectors 5

Implemented vs. Conceptual Connectors (cont’d)

• Connectors in software architectures
• First-class entities

• Have identity

• Describe all system interaction

• Entitled to their own specifications & abstractions

Module 2: Connectors 6

Reasons for Treating Connectors Independently

• Connector  Component
• Components provide application-specific functionality

• Connectors provide application-independent interaction mechanisms

• Interaction abstraction and/or parameterization

• Specification of complex interactions

• Binary vs. N-ary

• Asymmetric vs. Symmetric

• Interaction protocols

Module 2: Connectors 7

Treating Connectors Independently (cont’d)

• Localization of interaction definition

• Extra-component system (interaction) information

• Component independence

• Component interaction flexibility

Module 2: Connectors 8

Benefits of First-Class Connectors

• Separate computation from interaction

• Minimize component interdependencies

• Support software evolution
• At component-, connector-, & system-level

• Potential for supporting dynamism

• Facilitate heterogeneity

• Become points of distribution

• Aid system analysis & testing

Module 2: Connectors 9

An Example of Explicit Connectors

Module 2: Connectors 10

An Example of Explicit Connectors (cont’d)

?

Module 2: Connectors 11

Connector foundations

• Connectors mainly used for:
• Flow of control: calling functions/ procedure or other programs

• Flow of data: memory access

• Additionally:
• Maintains one channel/ duct used to link interacting components

• Support flow of data and control between them

• Simple connectors (module linker) provide services by forming duct
between components

• Connector argument ducts with some combination of data and control
flow will provide richer interaction services (connecting specific
components based on the service needed)

• Very complex connectors can have internal architecture that includes
computation and information storage.

Module 2: Connectors 12

Connector foundations

• Simple connectors (module linker)

• Provide services by forming duct between
components

• Provide one type of interaction service

• Implemented in programming languages

Module 2: Connectors 13

Connector foundations
• Composite Connectors:

• Connector argument ducts with some combination of data and control
flow will provide richer interaction services (connecting specific
components based on the service needed)

• Very complex connectors can have internal architecture that includes
computation and information storage.

• Achieved through composition of several connectors (and possible
components)

• Provided as libraries and frameworks

• Combine many kind of interactions

• Can help to overcome the limitation so f modern programming
language

• Necessary to understand underlying, low-level interaction mechanism,
identify appropriate design choice, direct potential mismatch among
components

Module 2: Connectors 14

Framework for studying Connector

Module 2: Connectors

Category: Primary service /

role provided

Type: way in which interaction

services are realized

Dimension/ subdimension:

architectural relevant details

Value: dimension instances

Species: values from different

types

15

Software Connector Roles

• Locus of interaction among set of components

• Protocol specification (sometimes implicit) that defines its
properties

• Types of interfaces it is able to mediate

• Assurances about interaction properties

• Rules about interaction ordering

• Interaction commitments (e.g., performance)

• Roles

• Communication

• Coordination

• Conversion

• Facilitation

Module 2: Connectors 16

Connectors for Communication
• Main role associated with connectors

• Support:

• Different communication mechanisms

• e.g. procedure call, Remote Procedure Calls, shared data
access, message passing

• Constraints on communication structure/direction

• e.g. pipes

• Used to pass messages, exchanges data to be processed and
communicate results of computation

Module 2: Connectors 17

Connectors for Coordination

• Determine computation control mechanism

• Components interact by passing the thread of execution to each other

• Function calls and method invocation

• High order connectors such as signals and load balancing connectors
provide richer, more complex interactions built around coordination
services

• Control delivery of data

Module 2: Connectors 18

Connectors for Conversion

• Transform the interaction required by one component to that provided by
another

• Enable heterogeneous components to interact

• Enable interaction of independently developed, mismatched components

• Mismatches based on interaction
• Type

• Number

• Frequency

• Order

• Examples of converters
• Adaptors

• Wrappers

Module 2: Connectors 19

Connectors for Facilitation

• Mediate and streamline components interaction

• Enable interaction of components intended to interoperate

• Govern access to shared information

• Ensure proper performance profiles
• e.g., load balancing

• Provide synchronization mechanisms

• Critical sections

• Monitors

Module 2: Connectors 20

Connector Types/ levels
1. Procedure call

2. Data access

3. Event

4. Stream

5. Linkage

6. Distributor

7. Arbitrator

8. Adaptor

Module 2: Connectors 21

Procedure Call Connectors

Module 2: Connectors

• Coordination connectors:

• Model the flow of control among the components through various

invocation techniques

• Communication connectors:

• Perform transfer of data through parameters and return values

• Most widely used and best understood connectors

• E.g. procedure call included in OO methods, fork and exec in Unix like

environment , call-back invocation in event-based systems and operating

system calls

• Frequently used as the basis of composite connectors such as remote procedure

call (RPC)

22

Procedure Call Connectors

Module 2: Connectors

• Values of dimension

• Multiple entry versus Single entry point

• Fan- in (how many can be supported) and fan-out (how many can be called)

23

Procedure Call Connectors

Module 2: Connectors 24

Event Connectors

Module 2: Connectors

• An event is the instantaneous effect of the normal or abnormal termination of the

invocation of an operation on an object, which occurs at that object’s location.

• They are similar to procedure call connectors as they affect the flow of control

among components providing coordination services.

• Flow is participated by an event.

• After recognizing the occurrence of an event, event notification is generated

which concludes into component handling the event gaining the control.

• They form virtual connection between components interested in the same event

topics.

• Typically found in distributed applications that requires asynchronous

communication.

25

Event Connectors

Module 2: Connectors 26

Data Access Connectors

Module 2: Connectors

• Allow components to access data maintained by data store components as a

communication service

• Needs preparation of data store before and cleanup after access

• Format may be different before and after access, hence connector may transform

data from one format to another

• Persistent data: data access including query mechanism, such as SQL for data

access, accessing information in software components repositories.

• Transient data: data access through heap, stack memory , information caching etc.

• Could enable global access, Mutating (changing data) access

27

Data Access Connectors

Module 2: Connectors 28

Stream Connectors

Module 2: Connectors

• Used for transferring large amount of data between autonomous processes (as a

communication service)

• Used in client-server system using data transfer protocols to deliver results of

computation

• Can be combined with other types of connectors to provide composite type

connectors

29

Stream Connectors

Module 2: Connectors 30

Linkage Connectors

Module 2: Connectors

• Used to tie the system components together and hold in the same state during

operation

• Establishes channels/ ducts for communication and coordination through higher-

order connectors to enforce certain semantics.

• Works as facilitations services.

• Used to establish the link and later may disappear

• Semantic interconnections specifies how the linked components are supposed to

interact.

31

Linkage Connectors

Module 2: Connectors 32

Distributor Connectors

Module 2: Connectors

• Performs identification of interaction paths and subsequent routing of

communication and coordination information among components along these

paths.

• Provides facilitation services

• Always works in association with other connectors such as stream or procedural

call

33

Distributor Connectors

Module 2: Connectors 34

Arbitrator Connectors

Module 2: Connectors

• Streamlines system operations provide facilitation by resolving conflicts

• Coordination by redirecting flow of control

• E.g. in multithreaded environment shared memory access is provided through

synchronization and concurrency control

35

Arbitrator Connectors

Module 2: Connectors 36

Adaptor Connectors

Module 2: Connectors

• Provide facilities to support interaction

between components those may mismatch

• Interoperation in heterogeneous environment

such as different programming languages or

computing platforms

37

Adaptor Connectors

Module 2: Connectors 38

Merits of Connectors

• Connectors allow modeling of arbitrarily complex interactions

• Connector flexibility aids system evolution
• Component addition, removal, replacement, reconnection, migration

• Support for connector interchange is desired
• Aids system evolution

• May not affect system functionality

• Libraries of OTS connector implementations allow developers to focus on
application-specific issues

• Difficulties
• Rigid connectors

• Connector “dispersion” in implementations

• Key issue
• Performance vs. flexibility

Module 2: Connectors 39

Role and Challenge of Software Connectors

Attach adapter to A

Maintain multiple

versions of A

or B

B

Make B multilingual

AA

Change A’s form to B’s form

Provide B with

import/export converter

Separate B’s “essence”

from its packaging

Publish abstraction

of A’s form

Introduce

intermediate form

Transform on the fly

What is the right answer?
Negotiate to find

common form for A and B

How do we enable

components A and B to interact?

Module 2: Connectors 40

How Does One Select a Connector?

• Determine a system’s interconnection and interaction needs

• Software interconnection models can help

• Determine roles to be fulfilled by the system’s connectors

• Communication, coordination, conversion, facilitation

• For each connector

• Determine its appropriate type(s)

• Determine its dimensions of interest

• Select appropriate values for each dimension

• For multi-type, i.e., composite connectors

• Determine the atomic connector compatibilities

Module 2: Connectors 41

Simple Example
• System components will execute in two processes on the same host

• Mostly intra-process
• Occasionally inter-process

• The interaction among the components is synchronous

• The components are primarily computation-intensive
• There are some data storage needs, but those are secondary

• Select procedure call connectors for intra-process interaction

• Combine procedure call connectors with distributor connectors for inter-
process interaction
• RPC

• Select the values for the different connector dimensions
• What are the appropriate values?
• What values are imposed by your favorite programming language(s)?

Module 2: Connectors 42

Procedure Call Connectors Revisited

Module 2: Connectors 43

Distributor Connectors Revisited

Module 2: Connectors 44

Two Connector Types in Tandem

Select the

appropriate

values for PC

and RPC!

Module 2: Connectors 45

Selecting appropriate type of Connector

1. Select the specific set of interacting components.

2. Determine the interaction services the components need.
a) Identify specific characteristics of the components’ interaction

b) Study components’ architectural descriptions, implementation language and/ or framework

3. Based on the identified interaction services, determine a subset of connector types that
comprise the initial candidate set for providing those services.

4. Evaluate each connectors type from the chosen subset based on the details of interaction
requirements

5. For each of the remaining candidate connector types, set the values for the necessary
dimensions and subdimensions as appropriate

Module 2: Connectors 46

Connector Dimension Inter-Relationships

• Requires –

• Choice of one dimension mandates the choice of another

• Prohibits –

• Two dimensions can never be composed into a single connector

• Restricts –

• Dimensions are not always required to be used together

• Certain dimension combinations may be invalid

• Cautions –

• Combinations may result in unstable or unreliable connectors

Module 2: Connectors 47

Dimension Inter-Relationships

Module 2: Connectors 48

Well Known Composite Connectors

• Grid connectors (e.g., Globus)
• Procedure call
• Data access
• Stream
• Distributor

• Peer-to-peer connectors (e.g., Bittorrent)
• Arbitrator
• Data access
• Stream
• Distributor

• Client-server connectors

• Event-based connectors

Module 2: Connectors 49

	Slide 1: Software Architecture and Design Thinking 116U01C701
	Slide 2: Module 2: Connectors
	Slide 3: Connectors
	Slide 4: Where are Connectors in Software Systems?
	Slide 5: Implemented vs. Conceptual Connectors
	Slide 6: Implemented vs. Conceptual Connectors (cont’d)
	Slide 7: Reasons for Treating Connectors Independently
	Slide 8: Treating Connectors Independently (cont’d)
	Slide 9: Benefits of First-Class Connectors
	Slide 10: An Example of Explicit Connectors
	Slide 11: An Example of Explicit Connectors (cont’d)
	Slide 12: Connector foundations
	Slide 13: Connector foundations
	Slide 14: Connector foundations
	Slide 15: Framework for studying Connector
	Slide 16: Software Connector Roles
	Slide 17: Connectors for Communication
	Slide 18: Connectors for Coordination
	Slide 19: Connectors for Conversion
	Slide 20: Connectors for Facilitation
	Slide 21: Connector Types/ levels
	Slide 22: Procedure Call Connectors
	Slide 23: Procedure Call Connectors
	Slide 24: Procedure Call Connectors
	Slide 25: Event Connectors
	Slide 26: Event Connectors
	Slide 27: Data Access Connectors
	Slide 28: Data Access Connectors
	Slide 29: Stream Connectors
	Slide 30: Stream Connectors
	Slide 31: Linkage Connectors
	Slide 32: Linkage Connectors
	Slide 33: Distributor Connectors
	Slide 34: Distributor Connectors
	Slide 35: Arbitrator Connectors
	Slide 36: Arbitrator Connectors
	Slide 37: Adaptor Connectors
	Slide 38: Adaptor Connectors
	Slide 39: Merits of Connectors
	Slide 40: Role and Challenge of Software Connectors
	Slide 41: How Does One Select a Connector?
	Slide 42: Simple Example
	Slide 43: Procedure Call Connectors Revisited
	Slide 44: Distributor Connectors Revisited
	Slide 45: Two Connector Types in Tandem
	Slide 46: Selecting appropriate type of Connector
	Slide 47: Connector Dimension Inter-Relationships
	Slide 48: Dimension Inter-Relationships
	Slide 49: Well Known Composite Connectors

