
Software Architecture and
Design Thinking

116U01C701

Module 1

Module 1: Software Architecture& Design
Thinking (10)

• Basic Concepts

• Designing Architectures

• Conventional architectural styles

• Concepts of Software Architecture, Models, Processes, Stakeholders

• Styles and Architectural patterns, Pipes and Filters, Event based

• Implicit invocation, Layered systems, Repositories, Interpreters

Basic Concepts
A software architecture is defined as: “A software system
architecture is the set of principal design decisions made
about the system.”

SA is the blue print for system’s construction.

As the size and complexity of software systems increase,
the design and specifications of overall system structure
become more significant issues than the choice of
algorithms and data structures of computation.

Basic Concepts
Design decision encompass every aspect of system under development
related to:

• System structure: how elements should be organized and composed
• Functional behavior: how data processing, storage and visualization

will be sequenced
• Interaction: communication between all elements using event
• Non-functional properties: system dependability will be ensured
• Implementation: how the elements will be implemented

Software Architecture (SA) Level of Design
Structural issues:
• Organization of a system as a composition of components
• Global control structures
• The protocols of communication
• Synchronization and data access
• The assignments of functionality to design elements
• The composition of design elements
• Physical distribution
• Scaling and performance
• Dimensions of evolution
• Selection of design Alternatives

Basic Concepts

Basic Concepts

SA involves:
• the description of elements from which system are

built
• interactions among those elements
• patterns that guide their compositions
• constraints on these patterns
A system will be defined in terms of collection of
components and interactions among them, which may
become part of another bigger system

Basic Concepts

SA will be :
• Abstractly represented as box- and –line diagrams

accompanying details explaining the meaning of each
symbol specifying choice of each component

Basic Concepts

SA involves:
• the description of elements from which system are

built
• interactions among those elements
• patterns that guide their compositions
• constraints on these patterns
A system will be defined in terms of collection of
components and interactions among them, which may
become part of another bigger system

Temporal Aspect

• Design decisions are and made over a system’s lifetime

→ Architecture has a temporal aspect

• At any given point in time the system has only one architecture

• A system’s architecture will change over time

Basic Concepts

Prescriptive architecture v/s Descriptive architecture:
• As intended – as conceived architecture
• Perspective architecture need not necessarily exist in any

tangible form P
• P will be refined and realized with a set of artifacts A
• Descriptive architecture is representing it in any form

(UML etc.)

Basic Concepts

Prescripective architecture v/s Descriptive
architecture:
• Greenfield development: inception of intial set P1, A1 and

D1 is empty
• Brownfield development: D1 is non empty, P1 may be

empty

As-Designed vs. As-Implemented Architecture

As-Designed vs. As-Implemented Architecture

As-Designed vs. As-Implemented Architecture

▪ Which architecture is “correct”?

▪ Are the two architectures consistent with

 one another?

▪ What criteria are used to establish the

 consistency between the two architectures?

▪ On what information is the answer to the

 preceding questions based?

Architectural Evolution

• When a system evolves, ideally its prescriptive architecture is
modified first

• In practice, the system – and thus its descriptive architecture –
is often directly modified

• This happens because of
• Developer sloppiness

• Perception of short deadlines which prevent thinking in detail and
documenting

• Lack of documented prescriptive architecture

• Need or desire for code optimizations

• Inadequate techniques or tool support

Basic Concepts

Architectural Degradation:
• P and D would be identical at the start but over the

period there could be changes while realizing the
architecture

• When a system is initially developed or when already
implemented is evolved , P is modified

Architectural Degradation

• Two related concepts
• Architectural drift

• Architectural erosion

• Architectural drift is introduction of principal design decisions
into a system’s descriptive architecture that
• are not included in, encompassed by, or implied by the prescriptive

architecture

• but which do not violate any of the prescriptive architecture’s design
decisions

• Architectural erosion is the introduction of architectural design
decisions into a system’s descriptive architecture that violate its
prescriptive architecture

Architectural Recovery

• If architectural degradation is allowed to occur, one will be forced to
recover the system’s architecture sooner or later

• Architectural recovery is the process of determining a software
system’s architecture from its implementation-level artifacts

• Implementation-level artifacts can be
• Source code

• Executable files

• Java .class files

Deployment

• A software system cannot fulfill its purpose until it is deployed
• Executable modules are physically placed on the hardware devices on

which they are supposed to run

• The deployment view of an architecture can be critical in
assessing whether the system will be able to satisfy its
requirements

• Possible assessment dimensions
• Available memory

• Power consumption

• Required network bandwidth

Software Architecture’s Elements

• A software system’s architecture typically is not (and should not be) a
uniform monolith

• A software system’s architecture should be a composition and
interplay of different elements
• Processing

• Data, also referred as information or state

• Interaction

Components
• Elements that encapsulate processing and data in a system’s architecture are

referred to as software components

• Address key system concerns such as:

• Processing / functionality/ behavior

• State: information or data

• Interaction: interconnection, communication, coordination

• Components typically provide application-specific services

Components
Definition

• A software component is an architectural entity that

• encapsulates a subset of the system’s functionality and/or data

• restricts access to that subset via an explicitly defined interface

• has explicitly defined dependencies on its required execution context

• Component is a locus computation and state in a system

• Can be as a simple as an operation or as a complex as an entire system depending
on perspective

• Can be “seen” by the users (software or human) from outside through interface
or its like a “black box”

• Components implements software engineering principles such as encapsulation,
abstraction and modularity

Components
• Usable and reusable across applications

• Extent of the context by components include:

• Component’s required interface to services provided by other
components in a system on which component depends for its ability to
perform its operation

• Availability of resources, such as data files or directories on which the
components relies

• Required system software , such as programming language run time
environments, middleware platforms, operating systems, network
protocols and device drivers

• Hardware configuration needed to execute the components

Reusability- math libraries, GUI toolkit, word processor

Connectors

• In complex systems interaction may become more important
and challenging than the functionality of the individual
components

• Definition
• A software connector is an architectural building block tasked with

effecting and regulating interactions among components

• In many software systems connectors are usually simple
procedure calls or shared data accesses
• Much more sophisticated and complex connectors are possible!

• Connectors typically provide application-independent
interaction facilities

Examples of Connectors

• Shared data access:
• nonlocal variables or shared memory

• Allow multiple software components to interact by reading from and writing
to the shared facilities

• Interaction is distributed in time

• Distribution connectors:
• Encapsulate network library APIs

• Usually coupled with more basic connectors

• E.g. remote procedure call (RPC)

• Adaptor connectors –stdio.h

Examples of Connectors

• Procedure call connectors - mod(a,b)

• Message passing connectors

• Streaming connectors – printf()

• Distribution connectors

• Wrapper/adaptor connectors –stdio.h

Configurations

• Components and connectors are composed in a specific way in a
given system’s architecture to accomplish that system’s objective

• Definition
• An architectural configuration, or topology, is a set of specific associations

between the components and connectors of a software system’s architecture

• Called topology also

An Example Configuration

Architectural Styles

• Certain design choices regularly result in solutions with superior properties

• Compared to other possible alternatives, solutions such as this are more elegant, effective,
efficient, dependable, evolvable, scalable, and so on

• Definition

• An architectural style is a named collection of architectural design decisions that

• are applicable in a given development context

• constrain architectural design decisions that are specific to a particular system within
that context

• elicit beneficial qualities in each resulting system

Architectural Patterns

• Definition
• An architectural pattern is a set of architectural design

decisions that are applicable to a recurring design
problem, and parameterized to account for different
software development contexts in which that problem
appears

• A widely used pattern in modern distributed
systems is the three-tiered system pattern
• Science

• Banking

• E-commerce

• Reservation systems

Module 1: Software Architecture & design Thinking

Three-Tiered Pattern

• Front/client Tier
• Contains the user interface functionality to access the system’s services
• GUI

• Middle / application / business logic Tier
• Contains the application’s major functionality
• Incharge of significant process
• Service provider to front tier
• Deployed at Server host

• Back / back end / data Tier
• Contains the application’s data access and storage functionality

• Interaction is based on request-reply paradigm
• Strictly adhere to synchronous, request triggered

Three-Tiered Pattern

Order processing GUI
Order DatabaseOrder Processing server

Architectural Models, Views, and Visualizations

• Architecture Model
• An artifact documenting some or all of the architectural design decisions

about a system

• Architecture Visualization
• A way of depicting some or all of the architectural design decisions about a

system to a stakeholder

• Architecture View
• A subset of related architectural design decisions

Architectural Processes

• Architectural design

• Architecture modeling and visualization

• Architecture-driven system analysis

• Architecture-driven system implementation

• Architecture-driven system deployment, runtime redeployment, and
mobility

• Architecture-based design for non-functional properties, including
security and trust

• architectural adaptation

Stakeholders in a System’s Architecture

• Stakeholders are individuals, groups, or organizations that
are actively involved in a software project, can influence it
due to their position, and whose interests may be affected
by the success or failure of the project.

• Architects
• Developers
• Testers
• Managers
• Customers
• Users
• Vendors

Stakeholders in a System’s Architecture

Engineering Design Process/ Designing
Architectures
• Feasibility stage: identifying a set of feasible concepts for the design

as a whole

• Preliminary design stage: selection and development of the best
concept.

• Detailed design stage: development of engineering descriptions of the
concept.

• Planning stage: evaluating and altering the concept to suit the
requirements of production, distribution, consumption and product
retirement.

37

Potential Problems

• If the designer is unable to produce a set of feasible concepts,
progress stops.

• As problems and products increase in size and complexity, the
probability that any one individual can successfully perform the first
steps decreases.

• The standard approach does not directly address the situation where
system design is at stake, i.e. when relationship between a set of
products is at issue.

• As complexity increases or the experience of the designer is not
sufficient, alternative approaches to the design process must be
adopted.

38

Alternative Design Strategies

• Standard
• Linear model described above

• Cyclic
• Process can revert to an earlier stage

• Parallel
• Independent alternatives are explored in parallel

• Adaptive (“lay tracks as you go”)
• The next design strategy of the design activity is decided at the end of a given stage

• Incremental
• Each stage of development is treated as a task of incrementally improving the existing

design

39

Patterns, Styles, and DSSAs(Domain-Specific
Software Architectures)

40

Domain-Specific Software Architectures

• A DSSA is an assemblage of software components

• specialized for a particular type of task (domain),

• generalized for effective use across that domain, and

• composed in a standardized structure (topology) effective for building successful
applications.

• Since DSSAs are specialized for a particular domain they are only of value if one exists for the
domain wherein the engineer is tasked with building a new application.

• DSSAs are the pre-eminent means for maximal reuse of knowledge and prior development
and hence for developing a new architectural design.

41

Architectural Patterns

• An architectural pattern is a set of architectural design decisions that
are applicable to a recurring design problem, and parameterized to
account for different software development contexts in which that
problem appears.

• Architectural patterns are similar to DSSAs but applied “at a lower
level” and within a much narrower scope.

42

State-Logic-Display: Three-Tiered Pattern

• Application Examples
• Business applications

• Multi-player games

• Web-based applications

43

Model-View-Controller (MVC)

• Objective: Separation between information, presentation and user
interaction.

• When a model object value changes, a notification is sent to the view
and to the controller. So that the view can update itself and the
controller can modify the view if its logic so requires.

• When handling input from the user the windowing system sends the
user event to the controller; If a change is required, the controller
updates the model object.

44

Model-View-Controller

45

Sense-Compute-Control

46

Objective: Structuring embedded control applications

The Lunar Lander: A Long-Running Example

• A simple computer game that first appeared in the 1960’s

• Simple concept:
• You (the pilot) control the descent rate of the Apollo-era Lunar Lander

• Throttle setting controls descent engine

• Limited fuel

• Initial altitude and speed preset

• If you land with a descent rate of < 5 fps: you win (whether there’s fuel left or not)

• “Advanced” version: joystick controls attitude & horizontal motion

47

Sense-Compute-Control LL

48

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Architectural Styles

• An architectural style is a named collection of architectural design decisions that

• are applicable in a given development context

• constrain architectural design decisions that are specific to a particular system
within that context

• elicit beneficial qualities in each resulting system

• A primary way of characterizing lessons from experience in software system design

• Reflect less domain specificity than architectural patterns

• Useful in determining everything from subroutine structure to top-level application
structure

• Many styles exist

49

Definitions of Architectural Style

• Definition. An architectural style is a named collection of architectural design decisions that

• are applicable in a given development context

• constrain architectural design decisions that are specific to a particular system within
that context

• elicit beneficial qualities in each resulting system.

50

Basic Properties of Styles

• A vocabulary of design elements

• Component and connector types; data elements

• e.g., pipes, filters, objects, servers

• A set of configuration rules

• Topological constraints that determine allowed compositions of elements

• e.g., a component may be connected to at most two other components

• A semantic interpretation

• Compositions of design elements have well-defined meanings

• Possible analyses of systems built in a style

51

Benefits of Using Styles

• Design reuse
• Well-understood solutions applied to new problems

• Code reuse
• Shared implementations of invariant aspects of a style

• Understandability of system organization
• A phrase such as “client-server” conveys a lot of information

• Interoperability
• Supported by style standardization

• Style-specific analyses
• Enabled by the constrained design space

• Visualizations
• Style-specific depictions matching engineers’ mental models

52

Some Common Styles
• Traditional, language-influenced styles

• Main program and subroutines
• Object-oriented

• Layered

• Virtual machines
• Client-server

• Data-flow styles

• Batch sequential
• Pipe and filter

• Shared memory

• Blackboard
• Rule based

• Interpreter

• Interpreter
• Mobile code

• Implicit invocation

• Event-based
• Publish-subscribe

• Peer-to-peer

• “Derived” styles

• C2
• CORBA

53

Main Program and Subroutines LL

54

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Object-Oriented Style

• Components are objects
• Data and associated operations

• Connectors are messages and method invocations

• Style invariants
• Objects are responsible for their internal representation integrity
• Internal representation is hidden from other objects

• Advantages
• “Infinite malleability” of object internals
• System decomposition into sets of interacting agents

• Disadvantages
• Objects must know identities of servers
• Side effects in object method invocations

55

Object-Oriented LL

56

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

OO/LL in UML

57

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Layered Style

• Hierarchical system organization
• “Multi-level client-server”

• Each layer exposes an interface (API) to be used by above layers

• Each layer acts as a
• Server: service provider to layers “above”

• Client: service consumer of layer(s) “below”

• Connectors are protocols of layer interaction

• Example: operating systems

• Virtual machine style results from fully opaque layers

58

Layered Style (cont’d)

• Advantages
• Increasing abstraction levels

• Evolvability

• Changes in a layer affect at most the adjacent two layers
• Reuse

• Different implementations of layer are allowed as long as interface is
preserved

• Standardized layer interfaces for libraries and frameworks

59

Layered Style (cont’d)

• Disadvantages
• Not universally applicable

• Performance

• Layers may have to be skipped
• Determining the correct abstraction level

60

Layered Systems/Virtual Machines

61

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Layered LL

62

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Client-Server Style

• Components are clients and servers

• Servers do not know number or identities of clients

• Clients know server’s identity

• Connectors are RPC-based network interaction protocols

63

Client-Server LL

64

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Data-Flow Styles

Batch Sequential
• Separate programs are executed in order; data is passed as an aggregate from

one program to the next.

• Connectors: “The human hand” carrying tapes between the programs, a.k.a.
“sneaker-net ”

• Data Elements: Explicit, aggregate elements passed from one component to
the next upon completion of the producing program’s execution.

• Typical uses: Transaction processing in financial systems. “The
Granddaddy of Styles”

65

Batch-Sequential: A Financial Application

66

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Batch-Sequential LL

67

Not a recipe for a successful lunar mission!

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Pipe and Filter Style

• Components are filters

• Transform input data streams into output data streams

• Possibly incremental production of output

• Connectors are pipes

• Conduits for data streams

• Style invariants

• Filters are independent (no shared state)

• Filter has no knowledge of up- or down-stream filters

• Examples

• UNIX shell signal processing

• Distributed systems parallel programming

• Example: ls invoices | grep -e August | sort

68

Pipe and Filter (cont’d)

• Variations

• Pipelines — linear sequences of filters

• Bounded pipes — limited amount of data on a pipe

• Typed pipes — data strongly typed

• Advantages

• System behavior is a succession of component behaviors

• Filter addition, replacement, and reuse

• Possible to hook any two filters together

• Certain analyses

• Throughput, latency, deadlock

• Concurrent execution

69

Pipe and Filter (cont’d)

• Disadvantages
• Batch organization of processing

• Interactive applications

• Lowest common denominator on data transmission

70

Pipe and Filter LL

71

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Blackboard Style

• Two kinds of components
• Central data structure — blackboard

• Components operating on the blackboard

• System control is entirely driven by the blackboard state

• Examples
• Typically used for AI systems

• Integrated software environments (e.g., Interlisp)

• Compiler architecture

72

Blackboard LL

73

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Rule-Based Style

Inference engine parses user input and determines whether it is a
fact/rule or a query. If it is a fact/rule, it adds this entry to the
knowledge base. Otherwise, it queries the knowledge base for
applicable rules and attempts to resolve the query.

74

Rule-Based Style (cont’d)

• Components: User interface, inference engine, knowledge base

• Connectors: Components are tightly interconnected, with direct
procedure calls and/or shared memory.

• Data Elements: Facts and queries

• Behavior of the application can be very easily modified through
addition or deletion of rules from the knowledge base.

• Caution: When a large number of rules are involved understanding
the interactions between multiple rules affected by the same facts
can become very difficult.

75

Rule Based LL

76

Interpreter Style
Interpreter parses and executes input commands, updating the state maintained by the
interpreter

• Components: Command interpreter, program/interpreter state, user interface.

• Connectors: Typically very closely bound with direct procedure calls and shared state.

• Highly dynamic behavior possible, where the set of commands is dynamically modified.
System architecture may remain constant while new capabilities are created based
upon existing primitives.

• Superb for end-user programmability; supports dynamically changing set of capabilities

• Lisp and Scheme

77

Interpreter LL

78

Mobile-Code Style

• Summary: a data element (some representation of a program) is
dynamically transformed into a data processing component.

• Components: “Execution dock”, which handles receipt of code and
state; code compiler/interpreter

• Connectors: Network protocols and elements for packaging code and
data for transmission.

• Data Elements: Representations of code as data; program state; data

• Variants: Code-on-demand, remote evaluation, and mobile agent.

79

Mobile Code LL

80

Scripting languages (i.e. JavaScript,

VBScript), ActiveX control,

embedded Word/Excel macros.

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Implicit Invocation Style

• Event announcement instead of method invocation

• “Listeners” register interest in and associate methods with events

• System invokes all registered methods implicitly

• Component interfaces are methods and events

• Two types of connectors

• Invocation is either explicit or implicit in response to events

• Style invariants

• “Announcers” are unaware of their events’ effects

• No assumption about processing in response to events

81

Implicit Invocation (cont’d)

• Advantages
• Component reuse

• System evolution
• Both at system construction-time & run-time

• Disadvantages
• Counter-intuitive system structure

• Components relinquish computation control to the system

• No knowledge of what components will respond to event

• No knowledge of order of responses

82

Publish-Subscribe

Subscribers register/deregister to receive specific messages or specific
content. Publishers broadcast messages to subscribers either
synchronously or asynchronously.

83

Publish-Subscribe (cont’d)

• Components: Publishers, subscribers, proxies for managing distribution

• Connectors: Typically a network protocol is required. Content-based subscription
requires sophisticated connectors.

• Data Elements: Subscriptions, notifications, published information

• Topology: Subscribers connect to publishers either directly or may receive notifications
via a network protocol from intermediaries

• Qualities yielded Highly efficient one-way dissemination of information with very low-
coupling of components

84

Pub-Sub LL

85

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Event-Based Style

• Independent components asynchronously emit and receive events communicated over event
buses

• Components: Independent, concurrent event generators and/or consumers

• Connectors: Event buses (at least one)

• Data Elements: Events – data sent as a first-class entity over the event bus

• Topology: Components communicate with the event buses, not directly to each other.

• Variants: Component communication with the event bus may either be push or pull based.

• Highly scalable, easy to evolve, effective for highly distributed applications.

86

Event-based LL

87

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Peer-to-Peer Style

• State and behavior are distributed among peers which can act as
either clients or servers.

• Peers: independent components, having their own state and control
thread.

• Connectors: Network protocols, often custom.

• Data Elements: Network messages

88

Peer-to-Peer Style (cont’d)

• Topology: Network (may have redundant connections between
peers); can vary arbitrarily and dynamically

• Supports decentralized computing with flow of control and
resources distributed among peers. Highly robust in the face of
failure of any given node. Scalable in terms of access to resources
and computing power. But caution on the protocol!

89

Peer-to-Peer LL

90

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Heterogeneous Styles

• More complex styles created through composition of simpler styles

• REST (from the first lecture)
• Complex history presented later in course

• C2
• Implicit invocation + Layering + other constraints

• Distributed objects
• OO + client-server network style

• CORBA

91

C2 Style

An indirect invocation style in which independent components
communicate exclusively through message routing connectors.
Strict rules on connections between components and connectors
induce layering.

92

C2 Style (cont’d)

• Components: Independent, potentially concurrent message
generators and/or consumers

• Connectors: Message routers that may filter, translate, and
broadcast messages of two kinds: notifications and requests.

• Data Elements: Messages – data sent as first-class entities over the
connectors. Notification messages announce changes of state.
Request messages request performance of an action.

• Topology: Layers of components and connectors, with a defined
“top” and “bottom”, wherein notifications flow downwards and
requests upwards.

93

C2 LL

94

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

KLAX

95

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

KLAX in C2

96

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Distributed Objects: CORBA Common
Object Request Broker Architecture
• “Objects” (coarse- or fine-grained) run on heterogeneous hosts, written in heterogeneous

languages. Objects provide services through well-defined interfaces. Objects invoke methods
across host, process, and language boundaries via remote procedure calls (RPCs).

• Components: Objects (software components exposing services through well-defined provided
interfaces)

• Connector: (Remote) Method invocation

• Data Elements: Arguments to methods, return values, and exceptions

• Topology: General graph of objects from callers to callees.

• Additional constraints imposed: Data passed in remote procedure calls must be serializable.
Callers must deal with exceptions that can arise due to network or process faults.

• Location, platform, and language “transparency”. CAUTION

97

CORBA Concept and Implementation

98

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

CORBA LL

99

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Observations

• Different styles result in

• Different architectures

• Architectures with greatly differing properties

• A style does not fully determine resulting architecture

• A single style can result in different architectures

• Considerable room for

• Individual judgment

• Variations among architects

• A style defines domain of discourse

• About problem (domain)

• About resulting system

100

Style Summary (1/4)

101

Style
Category &
Name

Summary Use It When Avoid It When

Language-influenced styles

Main Program
and
Subroutines

Main program controls
program execution, calling
multiple subroutines.

Application is small and simple. Complex data structures needed.
Future modifications likely.

Object-oriented Objects encapsulate state
and accessing functions

Close mapping between external
entities and internal objects is
sensible.
Many complex and interrelated
data structures.

Application is distributed in a
heterogeneous network.
Strong independence between
components necessary.
High performance required.

Layered

Virtual
Machines

Virtual machine, or a
layer, offers services to
layers above it

Many applications can be based
upon a single, common layer of
services.
Interface service specification
resilient when implementation of
a layer must change.

Many levels are required (causes
inefficiency).
Data structures must be accessed
from multiple layers.

Client-server Clients request service
from a server

Centralization of computation
and data at a single location (the
server) promotes manageability
and scalability; end-user
processing limited to data entry
and presentation.

Centrality presents a single-point-
of-failure risk; Network bandwidth
limited; Client machine capabilities
rival or exceed the server’s.

Style Summary, continued (2/4)

102

Data-flow styles

Batch

sequential

Separate programs

executed sequentially,
with batched input

Problem easily formulated as a

set of sequential, severable
steps.

Interactivi ty or concurrency

between components necessary
or desirable.
Random-access to data required.

Pipe-and-filter Separate programs, a.k.a.
filters, executed,
potentially concurrently.
Pipes route data streams
between filters

[As with batch-sequential] Filters
are useful in more than one
application. Data structures
easily serializable.

Interaction between components
required. Exchange of complex
data structures between
components required.

Shared memory

Blackboard Independent programs,
access and communicate
exclusively through a
global repository known
as blackboard

All calculation centers on a
common, changing data
structure;
Order of processing dynamically
determined and data-driven.

Programs deal with independent
parts of the common data.
Interface to common data
susceptible to change. When
interactions between the

independent programs require
complex regulation.

Rule-based Use facts or rules entered
into the knowledge base
to resolve a query

Problem data and queries
expressible as simple rules over
which inference may be

performed.

Number of rules is large.
Interaction between rules present.
High-performance required.

Style Summary, continued (3/4)

103

Interpreter

Interpreter Interpreter parses and

executes the input stream,
updating the state
maintained by the
interpreter

Highly dynamic behavior

required. High degree of end-
user customizability.

High performance required.

Mobile Code Code is mobile, that is, it
is executed in a remote
host

When it is more efficient to move
processing to a data set than the
data set to processing.
When it is desirous to
dynamically customize a local
processing node through
inclusion of external code

Security of mobile code cannot be
assured, or sandboxed.
When tight control of versions of
deployed software is required.

Style Summary, continued (4/4)

104

Implicit Invocation

Publish-

subscribe

Publishers broadcast

messages to subscribers

Components are very loosely

coupled. Subscription data is
small and efficiently transported.

When middleware to support high-

volume data is unavailable.

Event-based Independent components

asynchronously emit and
receive events
communicated over event
buses

Components are concurrent and

independent.
Components heterogeneous and
network-distributed.

Guarantees on real-time

processing of events is required.

Peer-to-peer Peers hold state and
behavior and can act as

both clients and servers

Peers are distributed in a
network, can be heterogeneous,

and mutually independent.
Robust in face of independent
failures.
Highly scalable.

Trustworthiness of independent
peers cannot be assured or

managed.
Resource discovery inefficient
without designated nodes.

More complex styles

C2 Layered network of
concurrent components
communicating by events

When independence from
substrate technologies required.
Heterogeneous applications.
When support for product-lines
desired.

When high-performance across
many layers required.
When multiple threads are
inefficient.

Distributed
Objects

Objects instantiated on
different hosts

Objective is to preserve illusion
of location-transparency

When high overhead of supporting
middleware is excessive. When

network properties are
unmaskable, in practical terms.

Design Recovery

• What happens if a system is already implemented but has no
recorded architecture?

• The task of design recovery is
• examining the existing code base

• determining what the system’s components, connectors, and overall topology
are.

• A common approach to architectural recovery is clustering of the
implementation-level entities into architectural elements.
• Syntactic clustering

• Semantic clustering

105

Syntactic Clustering

• Focuses exclusively on the static relationships among code-level
entities

• Can be performed without executing the system

• Embodies inter-component (a.k.a. coupling) and intra-component
(a.k.a. cohesion) connectivity

• May ignore or misinterpret many subtle relationships, because
dynamic information is missing

106

Semantic Clustering

• Includes all aspects of a system’s domain knowledge and information
about the behavioral similarity of its entities.

• Requires interpreting the system entities’ meaning, and possibly
executing the system on a representative set of inputs.

• Difficult to automate

• May also be difficult to avail oneself of it

107

When There’s No Experience to Go On…

• The first effort a designer should make in addressing a novel design
challenge is to attempt to determine that it is genuinely a novel
problem.

• Basic Strategy
• Divergence – shake off inadequate prior approaches and discover or admit a

variety of new ideas

• Transformation – combination of analysis and selection

• Convergence – selecting and further refining ideas

• Repeatedly cycling through the basic steps until a feasible solution
emerges.

108

Analogy Searching

• Examine other fields and disciplines unrelated to the target problem
for approaches and ideas that are analogous to the problem.

• Formulate a solution strategy based upon that analogy.

• A common “unrelated domain” that has yielded a variety of solutions
is nature, especially the biological sciences.
• E.g., Neural Networks

109

Brainstorming

• Technique of rapidly generating a wide set of ideas and thoughts pertaining to a design
problem

• without (initially) devoting effort to assessing the feasibility.

• Brainstorming can be done by an individual or, more commonly, by a group.

• Problem: A brainstorming session can generate a large number of ideas… all of which might
be low-quality.

• The chief value of brainstorming is in identifying categories of possible designs, not any
specific design solution suggested during a session.

• After brainstorm the design process may proceed to the Transformation and Convergence
steps.

110

“Literature” Searching

• Examining published information to identify material that can be used
to guide or inspire designers

• Many historically useful ways of searching “literature” are available

• Digital library collections make searching extraordinarily faster and
more effective
• IEEE Xplore

• ACM Digital Library

• Google Scholar

• The availability of free and open-source software adds special value
to this technique.

111

Morphological Charts

• The essential idea:

• identify all the primary functions to be performed by the desired system

• for each function identify a means of performing that function

• attempt to choose one means for each function such that the collection of means
performs all the required functions in a compatible manner.

• The technique does not demand that the functions be shown to be independent when
starting out.

• Sub-solutions to a given problem do not need to be compatible with all the sub-solutions to
other functions in the beginning.

112

Removing Mental Blocks

• If you can’t solve the problem, change the problem to one you can
solve.
• If the new problem is “close enough” to what is needed, then closure is

reached.

• If it is not close enough, the solution to the revised problem may suggest new
venues for attacking the original.

113

Controlling the Design Strategy

• The potentially chaotic nature of exploring diverse approaches to the
problem demands that some care be used in managing the activity

• Identify and review critical decisions

• Relate the costs of research and design to the penalty for taking
wrong decisions

• Insulate uncertain decisions

• Continually re-evaluate system “requirements” in light of what the
design exploration yields

114

Insights from Requirements

• In many cases new architectures can be created based upon
experience with and improvement to pre-existing architectures.

• Requirements can use a vocabulary of known architectural choices
and therefore reflect experience.

• The interaction between past design and new requirements means
that many critical decisions for a new design can be identified or
made as a requirement

115

Insights from Implementation

• Constraints on the implementation activity may help shape the
design.

• Externally motivated constraints might dictate
• Use of a middleware

• Use of a particular programming language

• Software reuse

• Design and implementation may proceed cooperatively and
contemporaneously
• Initial partial implementation activities may yield critical performance or

feasibility information

116

C2 Style

An indirect invocation style in which independent components
communicate exclusively through message routing connectors.
Strict rules on connections between components and connectors
induce layering.

117

	Slide 1: Software Architecture and Design Thinking 116U01C701
	Slide 2: Module 1: Software Architecture& Design Thinking (10)
	Slide 3: Basic Concepts
	Slide 4: Basic Concepts
	Slide 5: Basic Concepts
	Slide 6: Basic Concepts
	Slide 7: Basic Concepts
	Slide 8: Basic Concepts
	Slide 9: Temporal Aspect
	Slide 10: Basic Concepts
	Slide 11: Basic Concepts
	Slide 12: As-Designed vs. As-Implemented Architecture
	Slide 13: As-Designed vs. As-Implemented Architecture
	Slide 14: As-Designed vs. As-Implemented Architecture
	Slide 15: Architectural Evolution
	Slide 16: Basic Concepts
	Slide 17: Architectural Degradation
	Slide 18: Architectural Recovery
	Slide 19: Deployment
	Slide 20: Software Architecture’s Elements
	Slide 21: Components
	Slide 22: Components
	Slide 23: Components
	Slide 24: Connectors
	Slide 25: Examples of Connectors
	Slide 26: Examples of Connectors
	Slide 27: Configurations
	Slide 28: An Example Configuration
	Slide 29: Architectural Styles
	Slide 30: Architectural Patterns
	Slide 31: Three-Tiered Pattern
	Slide 32: Three-Tiered Pattern
	Slide 33: Architectural Models, Views, and Visualizations
	Slide 34: Architectural Processes
	Slide 35: Stakeholders in a System’s Architecture
	Slide 36: Stakeholders in a System’s Architecture
	Slide 37: Engineering Design Process/ Designing Architectures
	Slide 38: Potential Problems
	Slide 39: Alternative Design Strategies
	Slide 40: Patterns, Styles, and DSSAs(Domain-Specific Software Architectures)
	Slide 41: Domain-Specific Software Architectures
	Slide 42: Architectural Patterns
	Slide 43: State-Logic-Display: Three-Tiered Pattern
	Slide 44: Model-View-Controller (MVC)
	Slide 45: Model-View-Controller
	Slide 46: Sense-Compute-Control
	Slide 47: The Lunar Lander: A Long-Running Example
	Slide 48: Sense-Compute-Control LL
	Slide 49: Architectural Styles
	Slide 50: Definitions of Architectural Style
	Slide 51: Basic Properties of Styles
	Slide 52: Benefits of Using Styles
	Slide 53: Some Common Styles
	Slide 54: Main Program and Subroutines LL
	Slide 55: Object-Oriented Style
	Slide 56: Object-Oriented LL
	Slide 57: OO/LL in UML
	Slide 58: Layered Style
	Slide 59: Layered Style (cont’d)
	Slide 60: Layered Style (cont’d)
	Slide 61: Layered Systems/Virtual Machines
	Slide 62: Layered LL
	Slide 63: Client-Server Style
	Slide 64: Client-Server LL
	Slide 65: Data-Flow Styles
	Slide 66: Batch-Sequential: A Financial Application
	Slide 67: Batch-Sequential LL
	Slide 68: Pipe and Filter Style
	Slide 69: Pipe and Filter (cont’d)
	Slide 70: Pipe and Filter (cont’d)
	Slide 71: Pipe and Filter LL
	Slide 72: Blackboard Style
	Slide 73: Blackboard LL
	Slide 74: Rule-Based Style
	Slide 75: Rule-Based Style (cont’d)
	Slide 76: Rule Based LL
	Slide 77: Interpreter Style
	Slide 78: Interpreter LL
	Slide 79: Mobile-Code Style
	Slide 80: Mobile Code LL
	Slide 81: Implicit Invocation Style
	Slide 82: Implicit Invocation (cont’d)
	Slide 83: Publish-Subscribe
	Slide 84: Publish-Subscribe (cont’d)
	Slide 85: Pub-Sub LL
	Slide 86: Event-Based Style
	Slide 87: Event-based LL
	Slide 88: Peer-to-Peer Style
	Slide 89: Peer-to-Peer Style (cont’d)
	Slide 90: Peer-to-Peer LL
	Slide 91: Heterogeneous Styles
	Slide 92: C2 Style
	Slide 93: C2 Style (cont’d)
	Slide 94: C2 LL
	Slide 95: KLAX
	Slide 96: KLAX in C2
	Slide 97: Distributed Objects: CORBA Common Object Request Broker Architecture
	Slide 98: CORBA Concept and Implementation
	Slide 99: CORBA LL
	Slide 100: Observations
	Slide 101: Style Summary (1/4)
	Slide 102: Style Summary, continued (2/4)
	Slide 103: Style Summary, continued (3/4)
	Slide 104: Style Summary, continued (4/4)
	Slide 105: Design Recovery
	Slide 106: Syntactic Clustering
	Slide 107: Semantic Clustering
	Slide 108: When There’s No Experience to Go On…
	Slide 109: Analogy Searching
	Slide 110: Brainstorming
	Slide 111: “Literature” Searching
	Slide 112: Morphological Charts
	Slide 113: Removing Mental Blocks
	Slide 114: Controlling the Design Strategy
	Slide 115: Insights from Requirements
	Slide 116: Insights from Implementation
	Slide 117: C2 Style

