

K. J. Somaiya College of Engineering, Mumbai-77

Department of Computer Engineering SADT/Sem-VII – July-Dec 2024

 Page 1

TITLE: Architecture of any operating system, draw diagram using ADL

AIM: Study of architecture of operating system .

Expected OUTCOME of Experiment:

Using ADL represent operating system architecture

CO 1. Design the architecture of software systems in various architectural styles.

Books/ Journals/ Websites referred:

• https://www.xcubelabs.com/blog/software-architecture-understanding-styles-

and-patterns-for-effective-system-design/#:~:text=Architectural Styles are high-

level strategies that provide an,or homes. Examples include Layered Event-

Driven and Microservices. Last visited on 24 July 2024

•

__

Background Theory:

A software system's high-level structure, or software architecture, is made up of the rules,

patterns, and guidelines that determine how the system is organized, interacts, and is

related to its components.

The design decisions will help in providing:

Modularity: allowing the system into interchangeable components that can be developed, tested,

and maintained independently.

Encapsulation: Hiding the details of the components, exposing only the necessary information,

thus reducing the complexity of the system.

Security: Incorporating the measures to protect the system against the unauthorized access.

Documentation: Provides clear documentation of the system architecture, thus facilitating

communication and better understanding of the system.

Performance: Ensuring that the system meets the required performance metrics such as resource

utilization, throughput, etc.

Batch: A1 Roll No.: 16010121045

Experiment / assignment / tutorial No

https://www.xcubelabs.com/blog/software-architecture-understanding-styles-and-patterns-for-effective-system-design/#:~:text=Architectural
https://www.xcubelabs.com/blog/software-architecture-understanding-styles-and-patterns-for-effective-system-design/#:~:text=Architectural

K. J. Somaiya College of Engineering, Mumbai-77

Department of Computer Engineering SADT/Sem-VII – July-Dec 2024

 Page 2

There are various types of Software Architectural Styles.

• Data-centered architecture

• Data-flow architecture

• Call and return architectures

• Object-oriented architectures

• Layered architectures

Different architectural patterns will be used for implementing software systems based on:

1. System Requirements
Functional Requirements: What the system needs to do, the features and capabilities it must

provide.

Non-Functional Requirements: Attributes such as performance, scalability, security,

maintainability, and usability.

2. Design Principles

Separation of Concerns: Dividing the system into distinct sections, each addressing a separate

concern.

Modularity: Designing the system in a way that components can be developed, tested, and

understood in isolation.

Abstraction: Hiding the complexity of implementation details, providing a simplified interface.

Encapsulation: Bundling data and methods that operate on the data within one unit, restricting

access to some of the object's components.

3. Scalability and Performance

The ability to handle increased load, either by scaling up (adding more resources) or scaling out

(adding more nodes).

Patterns like microservices and event-driven architecture are designed to improve scalability and

performance.

4. Maintainability and Flexibility

Ease of modifying the system to fix bugs, add features, or adapt to changing requirements.

Patterns like layered architecture and component-based architecture promote maintainability and

flexibility.

5. Security

Protecting the system from unauthorized access and ensuring data integrity and confidentiality.

Patterns like service-oriented architecture (SOA) and microservices can help isolate and secure

individual components.

K. J. Somaiya College of Engineering, Mumbai-77

Department of Computer Engineering SADT/Sem-VII – July-Dec 2024

 Page 3

6. Development Team Skills and Experience

The expertise of the development team with certain technologies and architectural patterns.

Patterns should align with the team's capabilities to ensure effective implementation and

maintenance.

7. Technology Stack

The programming languages, frameworks, and tools that will be used in the system.

Patterns should be chosen to leverage the strengths of the chosen technology stack.

8. Integration Requirements

How the system will interact with other systems, services, and databases.

Patterns like microservices and SOA facilitate integration with external systems and services.

9. Deployment Environment

Whether the system will be deployed on-premises, in the cloud, or in a hybrid environment.

Patterns like cloud-native architecture are optimized for cloud deployment.

10. Business Goals

Alignment with the strategic objectives of the organization, including time-to-market, cost

constraints, and long-term vision.

Patterns should support achieving the business goals effectively.

11. User Experience

The expectations of end-users in terms of interface design and interaction.

Patterns like model-view-controller (MVC) help create a better user experience by separating

concerns.

Software architecture patterns offer reusable designs for various situations, to offer advantages

such as improved efficiency, productivity, speed, cost optimization, and better planning.

Laboratory Work:

The previous experiment introduces ArchiMate a tool used for drawing Software architecture

design. The students will be required to study architecture of any of the Operating System from

the following list and draw diagram

• Ubuntu

• Windows

• macOS

K. J. Somaiya College of Engineering, Mumbai-77

Department of Computer Engineering SADT/Sem-VII – July-Dec 2024

 Page 4

Business Layer

1. Business Actor

o User 1: Represents one type of user interacting with the system.

o User 2: Represents another type of user.

2. Business Process

o User Interface

▪ Graphical User Interface

▪ Desktop Interface: Part of the graphical user interface for

desktop applications.

▪ User Applications

▪ Native Apps: Applications designed to run on Windows OS.

▪ Non-Native Apps: Applications that are not originally designed

for Windows but can run on it.

3. Business Service

K. J. Somaiya College of Engineering, Mumbai-77

Department of Computer Engineering SADT/Sem-VII – July-Dec 2024

 Page 5

o Authentication: Services related to user authentication.

o Navigation: Services that help users navigate through applications.

o Application: General application services.

o File: Services related to file management.

o Configuration: Services for system or application configuration.

o Support: Support services for users.

Application Layer

1. System

o System Utilities: Utilities that assist in system management.

o System Libraries

▪ Configurations Daemons: Background processes for configuration

management.

▪ Libraries (Networking, etc.): Libraries that provide networking and

other functionalities.

2. Application Frameworks

o UI Frameworks: Frameworks for building user interfaces.

o Web Frameworks: Frameworks for developing web applications.

o Networking Frameworks: Frameworks for networking functionalities.

Technology Layer

1. Device Drivers

o Network Driver: Drivers for network devices.

o Disk Driver: Drivers for disk storage devices.

2. Kernel (Memory Management, I/O, etc.): Core component of the OS managing memory,

I/O operations, and other fundamental tasks.

3. Virtualization

o Virtual: Virtualization of resources.

o Root OS: The primary operating system in a virtualized environment.

o Hypervisor: Manages virtual machines.

K. J. Somaiya College of Engineering, Mumbai-77

Department of Computer Engineering SADT/Sem-VII – July-Dec 2024

 Page 6

4. Hardware

o CPU: Central Processing Unit.

o Memory: RAM and other memory components.

o Storage: Storage devices such as hard drives and SSDs.

K. J. Somaiya College of Engineering, Mumbai-77

Department of Computer Engineering SADT/Sem-VII – July-Dec 2024

 Page 7

Post Laboratory questions:

1. Compare Software Architectural patterns and Design Pattern

K. J. Somaiya College of Engineering, Mumbai-77

Department of Computer Engineering SADT/Sem-VII – July-Dec 2024

 Page 8

2. Explain Various type of Software Architecture Patterns giving example of

each

K. J. Somaiya College of Engineering, Mumbai-77

Department of Computer Engineering SADT/Sem-VII – July-Dec 2024

 Page 9

3. Explain in brief the architecture of Android Operating system.

References:

https://www.dragon1.com/downloads/microsoft%20architecture%20overview.pdf

https://www.slideshare.net/Stacksol/windows-architecture-explained-by-stacksol

https://www.dragon1.com/downloads/microsoft%20architecture%20overview.pdf
https://www.slideshare.net/Stacksol/windows-architecture-explained-by-stacksol

	AIM: Study of architecture of operating system .

	Expected OUTCOME of Experiment:
	Using ADL represent operating system architecture
	CO 1. Design the architecture of software systems in various architectural styles.

	Books/ Journals/ Websites referred:
	• https://www.xcubelabs.com/blog/software-architecture-understanding-styles-and-patterns-for-effective-system-design/#:~:text=Architectural Styles are high-level strategies that provide an,or homes. Examples include Layered Event-Driven and Microserv...
	•
	__
	Background Theory:
	A software system's high-level structure, or software architecture, is made up of the rules, patterns, and guidelines that determine how the system is organized, interacts, and is related to its components.
	The design decisions will help in providing:
	Modularity: allowing the system into interchangeable components that can be developed, tested, and maintained independently.
	Encapsulation: Hiding the details of the components, exposing only the necessary information, thus reducing the complexity of the system.
	Security: Incorporating the measures to protect the system against the unauthorized access.
	Documentation: Provides clear documentation of the system architecture, thus facilitating communication and better understanding of the system.
	Performance: Ensuring that the system meets the required performance metrics such as resource utilization, throughput, etc.
	Batch: A1 Roll No.: 16010121045
	Experiment / assignment / tutorial No
	There are various types of Software Architectural Styles.
	• Data-centered architecture
	• Data-flow architecture
	• Call and return architectures
	• Object-oriented architectures
	• Layered architectures
	Different architectural patterns will be used for implementing software systems based on:
	1. System Requirements
	Functional Requirements: What the system needs to do, the features and capabilities it must provide.
	Non-Functional Requirements: Attributes such as performance, scalability, security, maintainability, and usability.
	2. Design Principles
	Separation of Concerns: Dividing the system into distinct sections, each addressing a separate concern.
	Modularity: Designing the system in a way that components can be developed, tested, and understood in isolation.
	Abstraction: Hiding the complexity of implementation details, providing a simplified interface.
	Encapsulation: Bundling data and methods that operate on the data within one unit, restricting access to some of the object's components.
	3. Scalability and Performance
	The ability to handle increased load, either by scaling up (adding more resources) or scaling out (adding more nodes).
	Patterns like microservices and event-driven architecture are designed to improve scalability and performance.
	4. Maintainability and Flexibility
	Ease of modifying the system to fix bugs, add features, or adapt to changing requirements.
	Patterns like layered architecture and component-based architecture promote maintainability and flexibility.
	5. Security
	Protecting the system from unauthorized access and ensuring data integrity and confidentiality.
	Patterns like service-oriented architecture (SOA) and microservices can help isolate and secure individual components.
	6. Development Team Skills and Experience
	The expertise of the development team with certain technologies and architectural patterns.
	Patterns should align with the team's capabilities to ensure effective implementation and maintenance.
	7. Technology Stack
	The programming languages, frameworks, and tools that will be used in the system.
	Patterns should be chosen to leverage the strengths of the chosen technology stack.
	8. Integration Requirements
	How the system will interact with other systems, services, and databases.
	Patterns like microservices and SOA facilitate integration with external systems and services.
	9. Deployment Environment
	Whether the system will be deployed on-premises, in the cloud, or in a hybrid environment.
	Patterns like cloud-native architecture are optimized for cloud deployment.
	10. Business Goals
	Alignment with the strategic objectives of the organization, including time-to-market, cost constraints, and long-term vision.
	Patterns should support achieving the business goals effectively.
	11. User Experience
	The expectations of end-users in terms of interface design and interaction.
	Patterns like model-view-controller (MVC) help create a better user experience by separating concerns.
	Software architecture patterns offer reusable designs for various situations, to offer advantages such as improved efficiency, productivity, speed, cost optimization, and better planning.
	Laboratory Work:
	The previous experiment introduces ArchiMate a tool used for drawing Software architecture design. The students will be required to study architecture of any of the Operating System from the following list and draw diagram
	• Ubuntu
	• Windows
	• macOS
	Business Layer
	1. Business Actor
	o User 1: Represents one type of user interacting with the system.
	o User 2: Represents another type of user.
	2. Business Process
	o User Interface
	▪ Graphical User Interface
	▪ Desktop Interface: Part of the graphical user interface for desktop applications.
	▪ User Applications
	▪ Native Apps: Applications designed to run on Windows OS.
	▪ Non-Native Apps: Applications that are not originally designed for Windows but can run on it.
	3. Business Service
	o Authentication: Services related to user authentication.
	o Navigation: Services that help users navigate through applications.
	o Application: General application services.
	o File: Services related to file management.
	o Configuration: Services for system or application configuration.
	o Support: Support services for users.
	Application Layer
	1. System
	o System Utilities: Utilities that assist in system management.
	o System Libraries
	▪ Configurations Daemons: Background processes for configuration management.
	▪ Libraries (Networking, etc.): Libraries that provide networking and other functionalities.
	2. Application Frameworks
	o UI Frameworks: Frameworks for building user interfaces.
	o Web Frameworks: Frameworks for developing web applications.
	o Networking Frameworks: Frameworks for networking functionalities.
	Technology Layer
	1. Device Drivers
	o Network Driver: Drivers for network devices.
	o Disk Driver: Drivers for disk storage devices.
	2. Kernel (Memory Management, I/O, etc.): Core component of the OS managing memory, I/O operations, and other fundamental tasks.
	3. Virtualization
	o Virtual: Virtualization of resources.
	o Root OS: The primary operating system in a virtualized environment.
	o Hypervisor: Manages virtual machines.
	4. Hardware
	o CPU: Central Processing Unit.
	o Memory: RAM and other memory components.
	o Storage: Storage devices such as hard drives and SSDs.
	Post Laboratory questions:
	1. Compare Software Architectural patterns and Design Pattern
	2. Explain Various type of Software Architecture Patterns giving example of each
	3. Explain in brief the architecture of Android Operating system.
	References:
	https://www.dragon1.com/downloads/microsoft%20architecture%20overview.pdf
	https://www.slideshare.net/Stacksol/windows-architecture-explained-by-stacksol

