
Secure Programming

Web Client State Manipulation

Ahmet Burak Can

Hacettepe University

This slides are adapted from ‘Foundations of Security’ book

1

Agenda

� Web application – collection of programs used
by server to reply to client (browser) requests

� Often accept user input: don’t trust, validate!

� HTTP is stateless, servers don’t keep state

2

� HTTP is stateless, servers don’t keep state

� To conduct transactions, web apps have state

� State info may be sent to client who echoes it back in
future requests

� Example Exploit: “Hidden” parameters in HTML
are not really hidden, can be manipulated

Pizza Delivery Web Site
Example

� Web app for delivering pizza

� Online order form: order.html – say user
buys one pizza @ $5.50

� Confirmation form: generated by

3

� Confirmation form: generated by
confirm_order script, asks user to verify

purchase, price is sent as hidden form field

� Fulfillment: submit_order script handles

user’s order received as GET request from
confirmation form (pay & price variables

embedded as parameters in URL)

Pizza Order (1)4

Pizza Order (2)5

Pizza Web Site Code

�Confirmation Form:

<HTML>

<head>

<title>Pay for Pizza</title>

</head>

6

</head>

<body>

<form action="submit_order" method="GET">

<p> The total cost is 5.50. Are you sure you

would like to order? </p>

<input type="hidden" name="price" value="5.50">
<input type="submit" name="pay" value="yes">

<input type="submit" name="pay" value="no">

</form>

</body>

</HTML>

Pizza Web Site Code

�Submit Order Script:

if (pay = yes) {

success = authorize_credit_card_charge(price);

if (success) {

7

if (success) {

settle_transaction(price);

dispatch_delivery_person();

} else { // Could not authorize card

tell_user_card_declined();

}

} else { display_transaction_cancelled_page(); // no}

Buying Pizza Example

Web
Server

Web
Browser

Credit
Card

Payment

Order 1 Pizza

Confirm $5.50
Submit

8

Server
Browser
(Client)

Payment
Gateway

Submit
Order
$5.50

Attacker will modifyPrice Stored in

Hidden Form Variable

submit_order?price=5.50

Attack Scenario (1)

� Attacker navigates to order form…

9

Attack Scenario (2)

� …then to submit order form

10

Attack Scenario (3)

� And he can View | Source:

11

Attack Scenario (4)

� Changes price in source, reloads page!

12

� Browser sends request:

GET /submit_order?price=0.01&pay=yes HTTP/1.1

� Hidden form variables are essentially in clear

Attack Scenario (5)

Web
Web Credit

Card

Order 1 Pizza

Confirm $5.50

13

Web
Server

Web
Browser
(Client)

Card
Payment
Gateway

Confirm $5.50
Submit
Order
$0.01

Attacker modified
Price!

Attack Scenario (6)

� Command-line tools to generate HTTP requests

� curl or wget automates & speeds up attack:

curl https://www.deliver-me-pizza.com/submit_order

?price=0.01&pay=yes

14

?price=0.01&pay=yes

� Even against POST, can specify params as arguments to
curl or wget command

curl -dprice=0.01 -dpay=yes https://www.deliver-me-pizza.com/submit_order

wget --post-data 'price=0.01&pay=yes' https://www.deliver-me-

pizza.com/submit_order

Solution 1: Authoritative
State Stays on Server

� Server sends session-id to client

� Server has table mapping session-ids to prices

� Randomly generated (hard to guess) 128-bit
id sent in hidden form field instead of the

15

id sent in hidden form field instead of the
price.

� New Request

<input type="hidden" name="session-id"

value="3927a837e947df203784d309c8372b8e">

GET /submit_order?session-id=3927a837e947df203784d309c8372b8e

&pay=yes HTTP/1.1

Solution 1 Changes

� submit_order script changes:

if (pay = yes) {

price = lookup(session-id); // in table
if (price != NULL) {

success = authorize_credit_card_charge(price);

if (success) {

16

if (success) {

settle_transaction(price);

dispatch_delivery_person();

} else { // Could not authorize card

tell_user_card_declined();

}

}

else { // Cannot find session

display_transaction_cancelled_page();

log_client_IP_and_info(); }

} else {

// same no case

}

Session Management

� 128-bit session-id, n = # of session-ids

� Limit chance of correct guess to n/2128.

� Time-out idle session-ids

� Clear expired session-ids

17

� Clear expired session-ids

� Session-id: hash random # & IP address – harder
to attack (also need to spoof IP)

� Con: server requires DB lookup for each
request

� Performance bottleneck – possible DoS from
attackers sending random session-ids

� Distribute DB, load balance requests

Solution 2:
Signed State To Client

� Keep Server stateless, attach a signature

to state and send to client

� Can detect tampering through MACs

18

� Can detect tampering through MACs

� Sign whole transaction (based on all parameters)

� Security based on secret key known only to server

<input type="hidden" name="item-id" value="1384634">

<input type="hidden" name="qty" value="1">

<input type="hidden" name="address" value="123 Main St, Stanford, CA">

<input type="hidden" name="credit_card_no" value="5555 1234 4321 9876">

<input type="hidden" name="exp_date" value="1/2012">

<input type="hidden" name="price" value="5.50">

<input type="hidden" name="signature"
value="a2a30984f302c843284e9372438b33d2">

Solution 2 Analysis

� Changes in submit_order script:

if (pay = yes) {

// Aggregate transaction state parameters

// Note: | is concatenation operator, # a delimiter.

state = item-id | # | qty | # | address | # |
credit_card_no | # | exp_date | # | price;

//Compute message authentication code with server key K.

19

� Can detect tampered state vars from invalid signature

� Performance Hit

� Compute MACs when processing HTTP requests

� Stream state info to client -> extra bandwidth

//Compute message authentication code with server key K.

signature_check = MAC(K, state);
if (signature == signature_check)

{ // proceed normally }

else { // Invalid signature: cancel & log }

}

else

{ // no pay – cancel}

POST Instead of GET

� GET: form params (e.g. session-id) leak in
URL

� Could anchor these links in lieu of hidden form
fields

� Alice sends Meg URL in e-mail, Meg follows it &

20

� Alice sends Meg URL in e-mail, Meg follows it &

continues transaction w/o Alice’s consent

POST Instead of GET

�Referers can leak through outlinks:

� Assume that submit order page is called like:
https://www.deliver-me-pizza.com/submit_order? session-
id=3927a837e947df203784d309c8372b8e

� The page content is :

21

<HTML><HEAD>
<TITLE>Pizza Order Complete</TITLE>
</HEAD><BODY>
Thank you for your pizza order. It will arrive piping hot within 30 to 45 minutes!

Click here to order one more pizza!

You may also be interested in trying
our frozen pizzas at
GroceryStoreSite
</BODY> </HTML>

POST Instead of GET

� This

link

�Sends request to the other web server:

GET / HTTP/1.1 Referer:

22

�Session-id leaked to grocery-store-site’s
logs!

GET / HTTP/1.1 Referer:

https://www.deliver-me-pizza.com/submit_order?

session-id=3927a837e947df203784d309c8372b8e

Benefits of POST

� POST Request:

� Session-id not visible in URL

POST /submit_order HTTP/1.1

Content-Type: application/x-www-form-urlencoded

Content-Length: 45

session-id%3D3927a837e947df203784d309c8372b8e

23

� Session-id not visible in URL

� Pasting into e-mail wouldn’t leak it

� Slightly inconvenient for user, but more secure

� Referers can still leak w/o user interaction

� Instead of link, image:

� GET request for banner.gif still leaks session-id

Cookies

�Cookie - piece of state maintained by

client

� Server gives cookie to client

� Client returns cookie to server in HTTP requests

� Example: session-id in cookie in lieu of hidden

24

� Example: session-id in cookie in lieu of hidden
form field

� Secure dictates using SSL

� Browser Replies:

HTTP/1.1 200 OK

Set-Cookie: session-id=3927a837e947df203784d309c8372b8e; secure

GET /submit_order?pay=yes HTTP/1.1

Cookie: session-id=3927a837e947df203784d309c8372b8e

Problems with Cookies

� Cookies are associated with browser

� Sent back w/ each request, no hidden field
to tack on

25

� If user doesn’t log out, attacker can use
same browser to impersonate user

� Session-ids should have limited lifetime

JavaScript (1)

� Popular client-side scripting language

� Example: Compute prices of an order:

<html><head><title>Order Pizza</title></head><body>

<form action="submit_order" method="GET" name="f">

How many pizzas would you like to order?

26

How many pizzas would you like to order?

<input type="text" name="qty" value="1"

onKeyUp="computePrice();">
<input type="hidden" name="price" value="5.50">

<input type="submit" name="Order" value="Pay">

<input type="submit" name="Cancel" value="Cancel">

<script>

function computePrice() {

f.price.value = 5.50 * f.qty.value; // compute new value

f.Order.value = "Pay " + f.price.value // update price

}

</script>

</body></html>

JavaScript (2)

� Evil user can just delete JavaScript code,
substitute desired parameters & submit!

� Could also just submit request & bypass
JavaScript

GET /submit_order?qty=1000&price=0&Order=Pay

27

� Warning: data validation or computations
done by JavaScript cannot be trusted by
server

� Attacker may alter script in HTML code to
modify computations

� Must be redone on server to verify

GET /submit_order?qty=1000&price=0&Order=Pay

Summary

� Web applications need to maintain state

� HTTP stateless

� Hidden form fields, cookies

� Session-management, server with state…

28

� Don’t trust user input!

� keep state on server (space-expensive)

� Or sign transaction params (bandwidth-expensive)

� Use cookies, be wary of cross-site attacks (c.f. ch.10)

� No JavaScript for computations & validations

