Secure Programming

Cross-Site Request
Forgery(CSRF)
Vulnerabities

Ahmet Burak Can

Agenda

»\Web Application Authentication
» CSRF / Session Riding
»Scrver Side Countermeasures

» Client Side Protection
»Conclusion

The Browser “Same Origin”
POlICy bank.com

blog.net

document, cookies

Explicit Authentication

®» The authentication credentials are communicated by
the web application

» URL rewriting: Session token is included in every URL

» Form based session tokens

Immune against CSRF

(actually only almost immune)

Implicit Authentication

» Automatically executed by the browser
» Cookies
» hitp authentication (Basic, Digest, NTLM)
» |P based schemes
» Clientside SSL

Potentially vulnerable 1o CSRF

Session management with
cookies

» Affer the authentication form the server sets a cookie at the client’s
lbrowser

» Aslong as this cookie is valid, the client’s requests are tfreated as
authorized

Web browser Web server
P

E . N

"Welcome in" Web Page
—Cookie: authenticator

i ‘Si///

GET /restr; .
3 ookie: authena X htm]

Content of restricted page
4 ‘/'/

m The client requests a restricted
resource

m The server answers with a “401
Unauthorized” response

m This causes the client’s browser
to demand the credentials

lient resends the request

user’s credentials are
included via the “Authorization”
eader

Every further request to that
authentication realm contains
the credentials automatically

Client

GE

A0 Unau’mor

Tj

HTTP authentication (Basic, Digest)

ized

Server

IP based authentication

A about:blank - Microsoft Internet Explorer

Datei Bearbeiten Ansicht Favoriten Extras 2

Qo SEIDRER /ﬁ‘Suthen Seraoten @) (2- = LJEH B
Adresse | @] aboutiblark ~ | B wechseinzu

Links ¥8) Blink this site ¥8) viewCookies

E’

Intranet webserver

&] Fertig @ Intermnet

EE FireWO” EEENI

2 about:blank - Microsoft Internet Explorer

Datei Beabeten Ansicht Esvorten Esbras 2 o

D zurie (5] |1'] g] 7;] /.-‘Suchen *;jt.\‘Favomten &3} & = Q‘ ﬁ ﬁ
achesse | & aboutbank v [E] wechsen zu

Lirks ¥3) Blink this site ¥3) viewCookies

2] Fertig @ Internet

Client side SSL authentication

The client web browser possesses a X.509 certificate that was signed by an
authority that is trusted by the web application

Initial authentication:
®» The client has to prove his identity

® For this reason, the web server demands a valid signature from the client
» > “SSL handshake”

®» Depending on the browser, the user may or may not confirm the initial handshake
entering a password (only once)

If the handshake was successful, a SSL session is established between the clit
browser and the web server

As long as the SSL session is valid, all request to the web server are transmitte
using the negotiated credentials

CSRF / Session Riding

» [Exploits implicit authentfication mechanisms
» Known since 2001
» CSRF a.k.a. CSRF a.k.a. “Session Riding” (a.k.a. “Sea Surf”)

» Unknown/underestimated attack vector (compared to
XSS or SQL injection)

» The Aftack:

» The attacker creates a hidden http request inside the
victim's web browser

» This request is executed in the victim's authentication
context

CSRF / Session Riding (ll)

www.bank.com

Cookie: auth_ok

2] Fertig

CSRF / Session Riding (ll)

www.bank.com www.attacker.org

Cookie: auth_ok

] Fertig

Cross-Site Request Forgery

bank.com

=} b | e TOTN AL T - |

Vo B | de MIA Toeasa ol

o SR Y e

Clacloceea doe M e

Confirm Transaction
https://bank.com/fn?param=1

attacker’s post at blog.net

How Does CSRF Worke

» Tags

<iframe src=“https://bank.com/fn?param=1">

<script src=“https://bank.com/fn?param=1">

» Autoposting Forms

<body onload="document.forms[0].submit () ">

<form method="POST" action=“https://bank.com/fn”>

<input type="hidden" name="sp" value="8109"/>

</form>

» XmlHttpRequest

» Subject to same origin policy

Credentials Included

4 Blank Page - Windows Intemet Explorer

TN
UU | @ aboutblank

g el @ Blank Page

& Intemet | Protected Mode: On

bank.com

,/7
=B

https://bank.com/fn?param=1

JSESSIONID=AC934234..

®100% ~

blog.net

CSRF / Session Riding (lll)

» Cause: The web application does not verify that state
changing request were created “within” the web
application

» Affack methods:
» Forging GET requests:

®» |mage tag with SRC attribute that points to a state changing
URL

» The URL might be obfuscated by a http redirect

» [Forging POST request:
» Attacker creates an IFRAME (or a pop-up window)
» The frame is filled with a HTML form

» This form is submitted via JavaScript

Cross-domain inferactions

» Recdall...

» <script src=http://good.com/foo></script> in bad page
would cause legitimate script to run in context of bad
page!

®» |nstead, malicious page can initiate a POST request to
legitimate page, with arbitrary parameters

» Due fo the way web authenfication is handled (i.e., using
a cached credential), http requests will look as if they
come from the legitimate user if they are logged in when
they view the malicious page

CSRF Example

‘ |M’ Q 1. Alice’s browser loads page from bad.com
._—-—7

\ 2. Script runs causing evilform to be submitted with a
S0 password-change request by loading

\, / www.good.com/update pwd with attacker-specified
field

evilform

/Zform method="POST" name="evilform" target="hiddenframe"\\
action="https://www.good.com/update pwd">
<input type="hidden" id="password" wvalue=“badpwd'">
</form>
<lframe name="hiddenframe" style="display: none">

yi/iframe> <script>document.evilform.submit();</script>4//

3. Browser sends authentication cookies to good server. Honest
user's password is changed to badpwd!

Example 1: Breaking

Applications

» Vulnerable: digg.com

» digg.com’s frontpage is
determined by the number
of "diggs” a certain story
gets

» Using CSRF a webpage was
able to cause the victim'’s
browser to “digg” an
arbitrary URL

» The demo page “digged”
itself

806 Digyger's bloyg

GER = [Tl Google

GET YOUR DMWN BLOG " FLAGY
SEARCH THIS BLOG | | SEARCH ALL BLDGS | BlogThis!

[I] [I| Bhttp:f,‘4diggers.blogspot.mm;’

B Blogger

Digger's blog

NEXT ELOG:

Tuesday, June 06, 2006

... an introduction to session riding

Are vou logged in on digg and not using Opera? Well if vou a-e,
vou will digg this story eithes if you like it or not. Anyway, read on
and maybs vou'll find out some interesting things about session
riding.

ORI

Example 2: Causing
FiInancial Loss

» Vulnerable: Netflix.com

/806 Netflix: Welcome To Netfllx - Rent DVDs Online - Free Trial

L& |+ | D3 v netfl x com/Default Gl Gongle

= Add movies to your renfal queue NETFLIE s wneamn |

» Add a movie to the top of your The Best Way to Rent Movies
rental queue

Change the name and address
on your account

Change the email address and
password on your account (i.e.,
takeover your account)

Cancel your account
(Unconfirmed/Conjectured)

Example 3: Owning the
Server

|nA Hacker's Diary > Edi: Themes — WordPress

E] E| 9h1Lp:,',"FL\ileSE'3.inrormdl'lk.urli—hﬂmIJLrg.UE,-’:lulf.l’pr.u'wp—ddmin,-’.r'" E'Guog_:le
» Vulnerable: Wordpress 2.02 Hacker’s Diary wies» e e G A

Dashboard Write Manage Links Presentation Plugins Usars Options Import

= Wordpress' theme editor was
Scep.l.ible -I-O CSRF Selact theme to edit: | WordPress Default |4) [selects)

Wordpress theme-files can be Slsine hepderaphn

s Q0 i 1

. YUUpK, Anythning zbove that will ~ "WordPress Default'
php—flles get cropoped off of the image. ¥/ theme files
i
fheaderimg { background: url('<?php bloginfo Stylesheet
["stylesnhzet directary'); ?>/iLmages/ 404 Template
o personzlhaader.jpg') no-regpea:z top:} .
= Via CSRF an attacker could o s
“ietylen Archives

modify those files to contain gt o hes 1 2> pevo—

Popup Comments
<hody>
Comments

arbitrary php-code Footer

functions.php

<div id-"hezdexr"»
<div id="head=rimg"> Header
<hlaca nref-"<?pho echo get settings('heme');

Main Index Template
YRS pho bloginto('name'); ?r<Sar<d/nl> 7"

<div glase-"descoription"s<?php bloginfe Links
["descriptilon'); ¥></dive Page Template
< fdive rage femplate
</fdiv> Search Results
<hr /> 'y

searchform.php
Sidebar

R

Infranet

» Vulnerable: (most) infranet
webservers

» By dynamically including
xternal images and using
timed JavaScript events, a
malicious website can,

e.g..

» Portscan the intranet

®» Fingerprint existing web
servers and installed
applications

» - “JavaScript Malware”

|06

Example 4: Exploring the

Browser Exploit Framework

E] Ehttp!,-',f134.1{1[}.15.23?,,"baef,-'u'l,,"

- @v Google

Copyright © 2006 Wade Alcorn (http:/ /www.bindshell.net}. All Rights Reserved. Version 0.2

Browser Exploitation
Framework

@ BeEF

help

options

upcate

clear all results

Loaded
Modules

alert

browser details

sreal rlinhnard

port scanner

Port Scanner Module

Target

134,100.15.231
Port(s)

£1,22,80,8080,3308

timeout

500
result

sCan

IE returns less false positives
Results

o~

request

Zombies
K 8134.100.15.232
© &134100.15.54
@ ®134.100.15.231
© W34100.15.233

Scanning...
134.100.15.231:21 open
134.100.15.231:80 open
134.100.15.231:3306 open
134.100.15.231:22 open
134.100.15.231.8080 clused

CSRF / Session Riding (V)

» General problem:

» Session Riding vulnerabilities are NOT caused by
programming mistakes

» Completely correct code can be vulnerable
» The reason for Session Riding lies within http:

» No dedicated authentication credential

» State-changing GET requests

» JavaScript

“Preventing Session Riding”
is actually
“fixing the protocol”

Preventing CSRF attacks

» [nspect referrer headers

» HTTP protocol specifies a header indicating the URL of the
document from which current request originated

®» 50 good.com can try to prevent CSRF attacks by
ignoring POST requests if the referrer is not good.com

» However...

» Referrer fields can be absent for legitimate reasons (e.g.,
new window; stripped by proxies)

Misconceptions

» Referrer checking

» Some users prohibit referrers
2>referrerless requests have to be accepted

» Techniques to selectively create http request without referrers exist:

Method /Browser|IE 5|IE 6" |IE 777 |FF 1.07|FF 1.5/0 8|S 1.2
META Refresh X X
Dynamic filled frame| X | X X X X X
Pop up window (regular)| X | X X
Pop up window (dynamically filled) X X

IE: Internet Explorer; FF: Firefox; 5: Safari; O: Opera; *: [E 6 XPSP 2; **: [E 7 (Beta 2)
Table 1. Generating referrerless requests (“X” denotes a working method)

» Furthermore, referrers can be spoofed with Flash

Complete mediation

®» Prevent CSRF attacks by requiring user re-
authentication

= Nof practical to do this all the time

» User will be come frustrated!

®» Can require for ‘high-value’ transactions

Client-side protection

®» (Assumes servers do not use GET requests for modifying
data)

» Browser plug-in that filters out POST requests unless
requesting site and target site satisfy same-origin
policy

= Might sftill filter out some legitimate requests

Server-side protection

» Prevent CSRF attacks by allowing the legitimate server
to distinguish links in ‘fresh’ pages it serves, from links

embedded in attacker pages

» Add authenticated “action foken” as hidden field in
pages served; check token upon POST request

» Same-origin policy prevents 3@ parties from reading the
token

Action tokens

» Need away to bind token to session

®» At beginning of session, send cookie with random session-
id to user

» Compute MAC over the URL and the cookie (note that
cookie will be sent in any subsequent requests)

» This is potentially vulnerable to XSS attacks

» Atftacker injects script that steals user’'s cookie and token

