Secure Programming

Buffer Overflows

Ahmet Burak Can

Hacettepe University

Learning objectives

» Understand the definition of a buffer overflow
» | earn the importance of buffer overflows
» Know how buffer overflows happen

» Know how to handle strings safely with regular "C"
functions

» | earn safer ways to manipulate strings and buffers

Buffer Overflows

» Q.k.qa. "Buffer Overrun"

» A buffer overflow happens when a program attempts
to read or write data outside of the memory allocated
for that data

» Usually affects buffers of fixed size

» Special case of memory management and input
validation

An Important Vulnerabillity
Type

» Most Common (over 60% of CERT advisories)
» Well understood
®» Fqsy to avoid in principle
» Donf use "C" family languages, or be thorough
» Can be fricky (off-by-one errors)

» Tedious to do all the checks properly

» Temptation: "l don't need to because | control this data and
| *know™ that it will never be |larger than this"

» Until a hacker figures out how to change it

Example Overflow

char B[10];
B[10] = x;

» Array starts at index zero

» So [10]is 11th element

» One byte outside buffer was referenced

» Off-by-one errors are common and can be
exploitable!

Other Example

function do_ stuff (char * a) {
char b[100];

strcpy (b, a); // (dest, source)

}

» What is the size of the string located at “a”'¢
® |sit even a null-terminated stringe
» What if it was "strcpy (a, b);"instead?

» What is the size of the buffer pointed to by "a'"e

What happens when memory
outside a bufferis accessede

®» |[f memory doesn't exist:
» Buys error

® |f memory protection denies access:
®» Segmentation fault

» General protection fault

® |f access is allowed, memory next to the buffer can be
accessed

» Headp
» Stack

» FicC...

Real Life Example:
efingerd.c, v. 1.6.2

int get request (int d, char buffer[], u short len) ({
u_short 1i;
for (1=0; i< len; 1i++) {

}
buffer[i] = ‘\0’;
return 1i;

}

» What is the value of

at the end of the loop?
» Which byte just got zeroed?
® |t's fricky even if you try to get things right...

Real Life Example:
efingerd.c, v. 1.5

» CAN-2002-0423

static char *lookup addr (struct in addr in)
static char addr[100];
struct hostent *he;
he = gethostbyaddr(...)
strcpy (addr, he->h name);
return addr;

}
» How bigis he->h name?
®» Who conftrols the results of gethostbyaddr?

» How secure is DNS2 Can you be tfricked info looking
up a maliciously engineered value?

A Typical Stack Exploif

= The stack contains: High' Accressss

®» Parameters (arguments) to
function

» Refurn Address
Local variables

» Anything pushed on the stack

addr[100+] overwrites Stack
the return address grows
this way

addr[O] typically
contains exploit
code

Return address is
chosen to point at exploit

codel! Low Addresses

Fundamental "C" Problems

®» You can't know the length of buffers just from a pointer
= Partial solution: pass the length as a separate argument

» "C"string functions aren't safe

®» No guarantees that the new string will be null-terminated!

» Doing all checks completely and properly is tedious and
tricky

Strlen

» What happens when you call strlen on an improperly
terminated string?

» Strlen scans until a null character is found
» Can scan outside buffer if string is not null-terminated

= Can result in a segmentation fault or bus error

» Strlen is not safe to calll

» Unless you positively know that the string is null-
terminated...

» Are all the functions you use guaranteed to return a null-
terminated string?

Strcpy

char * strcpy(char * dst, const char * src);

®» How Ccan you use strcpy safely?

» Sef the last character of src fo NULL

» According to the size of the buffer pointed to by src or a size
parameter passed to you

» Not according to strlen(src)!

» Wide char array: sizeof(src)/sizeof(src[0]) -1 is the index of the
last element

» Check that the size of the src buffer is smaller than or
equal to that of the dst buffer

» Or allocate dst to be at least equal to the size of src

Strncpy

char * strncpy(char * dst, const char * src, size t len);

®» len"is maximum number of characters to copy

» Whatis the correct value forlen?

» |f dstis an array, sizeof (dst)
What if src is not NULL-terminated?

» Don't want to read outside of src buffer

» What is the correct value for "len" given that?

» Spare one character for NULL byte

®» MIN(sizeof (dst), sizeof(src)) - 1

o O’rh_ercijslsue: "dst" is NULL-terminated only if less than "len” characters were
copied!

» All calls to strncpy must be followed by a NULL-termination operation

Question Answer

= What's wrong with this function?

function do stuff (char * a) {
char b[100];

strncpy (b, a, strlen(a));

}

®» The string pointed to by could be larger than the size
of "b"l

Question Answer

= \What's wrong with this functione

function do stuff (char * a) {

char *b;

b = malloc(strlen(a)+1);

strncpy (b, a, strlenf(a));

}

» Are you absolutely certain that the string pointed to by
"a" is NULL-terminated<

Corrected Efinger.c (v.1.6)

® sizeof is your friend, when you can use it (if an array)

static char addr[100];
he = gethostbyaddr (...);
f (he == NULL)
strncpy (addr, inet ntoa(in), sizeof (addr));
else
strncpy (addr, he->h name, sizeof (addr));

» What is still wrong?

Corrected Efinger.c (v.1.6)

» Nofice that the last byte of addr is not zeroed, so this code can
produce non-NULL-terminated strings!

c char addr[100];
gethostbyaddr (...);
(he == NULL)
strncpy (addr, inet ntoa(in), sizeof (addr)):;
else
strncpy (addr, he->h name, sizeof (addr));

Strcat

char * strcat(char * s, const char * append);

» String pointed to by "append" is added at the end of the string
contained in buffer "s"

No check for size!

» Need to do all checks beforehand

= Example with arrays:

® i f (sizeof(s)-strlen(s)-1 >= strlen (append))
strcat (s, append):;

» Need to frust that "s" and "append" are NULL-terminated

» Or set their last byte to NULL before the checks and call

Strncat

char * strncat(char * s, const char * append,
size t count);

» 'No more than "count" characters are added, and then a NULL
IS added

» Correct callis complex:

® strncat (s, append, sizeof(s)-strlen(s)-1)

» Not a great improvement on strcat, because you still need to calculate
correctly the count

» And then figure out if the string was truncated

» Need to frust that "s" and "append" are NULL-terminated

» QOr setf their last byte to NUL before the checks and call

Stricat

SMZEN e scrlcat (char *dst, const char *SECHENSHEA -
size);

» Call semantics are simple:
strlcat (dst, src, dst len);
» |f an array:
®strlcat (dst, src, sizeof (dst));

» Safety: safe even if dstis not properly terminated

» \Won't read more than size characters from dst when looking for
the append location

» Noft safe if src is not properly terminated!

» |f dstis large and the buffer for src is small, then it could cause a
segmentation fault or bus error, or copy confidential values

Issues with Truncating Strings

®» Subsequent operations may fail or open up
vulnerabilities

» |f string is a path, then it may not refer to the same thing,
or be an invalid path

® Truncafion means you weren't able to do what you
wanted

= You should handle that error instead of letting it go
silently

Truncation Detection

» Truncation detection was simplified by strlcpy and
strlcat, by changing the return value

» The returned value is the size of what would have been
copied if the destination had an infinite size

» f the returned value is larger than the destination size,
truncation occurred

» Source still needs to be NULL-terminated

®» |nspired by snprintf and vsprintf, which do the same

» However, it still takes some consideration to make sure
the test is correct:

®» f (strlcpy(dest, src, sizeof (dest)) >=
sizeof (dest)) goto toolong;

Multl-Byte Character
Encodings

» Handling of strings using variable-width encodings or
multi-byte encodings is a problem

» c.g. UTF-8is 1-4 bytes long
How long is the string?

= [N bytes

®» |n characters

» Overflows are possible if size checks do not properly
account for character encoding!

» NET. System.String supports UTF-16

» Strings are immutable - no overflow possible there!

Safestr

» Free library for safe string operations:
®» hitps://manned.org/safestr/20fb981d

» Features:
» Works on UNIX and Windows

» Buffer overflow protection

» String format protection

» |imitations and differences:
®» Does not handle multi-byte characters
® |cense: binaries must reproduce a copyright notice
» NULL characters have no special meaning

» Must use their library functions all the time (but conversion to
regular "C" strings is easy)

Microsoft Strsafe

Null-termination guaranteed

Option for using either number of characters or bytes (for
Unicode character encoding), and disallowing the other

Option to treat truncation as a fatal error
Define behavior upon error

» Qutput buffer set to ™ or filled

Option to prevent information leaks
» Pqad rest of buffer
However, correct calculations still needed

®» c.g., wcsncat requires calculating the remaining space in the
destination string...

Future Microsoft

» Visual Studio 2005 have a new series of safe string
manipulation functions

» strcpy_s()
» strncpy_s()

» strncat_s()

» sirlen_s()

» cfC...

» Visual Studio 2005 (as of Beta 1) by default issues
deprecation warnings on strcpy, strncpy, etc... Say
goodbye to your old friends, they're too dangerous!

Other Unsafe Functions:
sprintt family

int sprintf(char *s, const char *format, /* args*/ ...);

» Buffer"s"' can be overflowed

snprintf (char *s, size t n, const char *format,
args*/ ...);

-» E)oe)s not guarantee NULL-fermination of s on some platforms (Microsoft,
un

» MacOS X: NULL-termination guaranteed
» Which is it on the servere Check with 'man snprintf"

int vsprintf (char * str, const char * format, va list
ap) ;
» RBuffer "str'' can be overflowed

Getfts, fgets

char *gets (char *str);

» Buffer "str' can be overflowed

ar *fgets(char * str, 1int size, FILE * stream);

» Buffer "str' is not NULL-terminated if an I/O error occurs

» |f an error occurs, returns NULL

» |f end-of-file occurs before any characters are read, returns NULL
also (and buffer is unchanged)

» Callers must use feof(3) and ferror(3) to determine which
occurred.

Conclusion

» Buffer sizes should be passed as a parameter with
every pointer

» Applies to other buffer manipulations besides strings

» Need simple truncation detection

Preventing Butfer Overflows
Without Programming

®» |dea: make the heap and stack non-executable

» Because many buffer overflow attacks aim at executing
code in the data that overflowed the buffer

®» Doesn't prevent "return into libc" overflow attacks

» Because the return address of the function on the stack
points to a standard "C" function (e.g., "system"), this
atfack doesn't execute code on the stack

®» c.g., ExecShield for Fedora Linux (used to be RedHat
Linux)

Canaries on a Stack

Add a few bytes containing special values between
variables on the stack and the return address.

Before the function returns, check that the values are
intact.

» |f not, there's been a buffer overflow!

» Terminate program

If the goal was a Denial-of-Service then it still happens

» At least the machine is not compromised

If the canary can be read by an attacker, then a
buffer overflow exploit can be made to rewrite them

» c.g., see string format vulnerabilities

Canary Implementations

StackGuard
Stack-Smashing Protector (SSP)

= Formerly ProPolice
®» gcc modification
» Used in OpenBSD
» http://www.irl.ibm.com/projects/security/ssp/

Windows: /GS option for Visual C++ NET

These can be useful when testing too!

Protection Using Virtual
Memory Pages

®» Page: A chunk (unif) of virfual memory

» PQOSIX systems have three permissions for each page.
» PROT_READ
» PROT_WRITE
» PROT_EXEC

» |dea: manipulate and enforce these permissions
correctly to defend against buffer overflows

» Make injected code non-executable

Windows Execution
Protection

» "NX" (No Execute)
» Windows XP service pack 2 feature
» Somewhat similar to POSIX permissions

® Requires processor support
» AMD64

» |ntel [fanium

Buffer Overflow Lab

®» Creatfe your own safe version of the strlen, strcpy, strcat
» Name them mysirlen, mystrcpy and mystrcat
» Pass buffer sizes for each pointer argument

» Return O if successful, and 1 if fruncation occurred

» Other error codes if you wish

» Make your implementation pass all test cases

» int mystrlien(const char *s, size_t s_len);
» |n this case, return the string length, not zero or one.
» int mystrcpy(char * dst, const char * src, size_t dst_len, size_t src_len);

» int mystrcat(char * s, const char * append, size_ts_len, size_t a_len);

Things to Ponder

What about O as source size<¢ Error or not?e
What if “s” is NULL?

What about overlapping bufferse Undefined everytime, or only
In certain casese?

What if reach the end in mystrlen?

How efficient to make it -- how many passes at source string are
made?

What to check firste
Reuse mystrlen within mystrcpy or mystrcate

Compare your implementations to strl*, strsafe, safestr, str*_s.

