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1. Type of Simulation w.r.t. Output Analysis 

Output analysis is the examination of the data generated by a 

simulation 

Its purpose is either to predict the performance of a system or to 

compare the performance of two or more alternate system designs 

The need for statistical output analysis is based on the observation 

that the output data from a simulation exhibits random variability 

• due to use of random numbers to produce input variables 

• Two different streams or sequences of random variables will 
produce two sets of outputs which will differ 
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1. Type of Simulation w.r.t. Output Analysis 

Objective: Estimate system performance via simulation 

If the system performance is measured by q , the result of a set of simulation 
experiments will be an estimator     of q 

The precision of the estimator    can be measured by: 

• The standard error of     . 

• The width of a confidence interval (CI) for q. 

Purpose of statistical analysis: 

• To estimate the standard error or CI . 

• To figure out the number of observations required to achieve desired 
error/CI. 

Potential issues to overcome:  

• Autocorrelation, e.g. inventory cost for subsequent weeks lack 
statistical independence. 

• Initial conditions, e.g. inventory on hand and # of backorders at time 
0 would most likely influence the performance of week 1. 

q̂

q̂

q̂
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1. Type of Simulation w.r.t. Output Analysis 

Distinguish the two types of simulation: transient vs. steady state. 

Illustrate the inherent variability in a stochastic discrete-event 

simulation. 

Cover the statistical estimation of performance measures. 

Discusses the analysis of transient simulations. 

Discusses the analysis of steady-state simulations. 
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1. Type of Simulation w.r.t. Output Analysis 

Terminating verses non-terminating simulations 

Terminating simulation: 

• Runs for some duration of time TE, where E is a specified event 
that stops the simulation. 

• Starts at time 0 under well-specified initial conditions. 

• Ends at the stopping time TE. 

• Bank example: Opens at 8:30 am (time 0) with no customers 
present and 8 of the 11 teller working (initial conditions), and 
closes at 4:30 pm (Time TE = 480 minutes). 

• The simulation analyst chooses to consider it a terminating 
system because the object of interest is one day’s operation. 
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1. Type of Simulation w.r.t. Output Analysis 

Non-terminating simulation: 

• Runs continuously, or at least over a very long period of time. 

• Examples: assembly lines that shut down infrequently, telephone 
systems, hospital emergency rooms. 

• Initial conditions defined by the analyst. 

• Runs for some analyst-specified period of time TE. 

• Study the steady-state (long-run) properties of the system, 
properties that are not influenced by the initial conditions of the 
model. 

Whether a simulation is considered to be terminating or non-

terminating depends on both 

• The objectives of the simulation study and 

• The nature of the system. 
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2. Stochastic Nature of Output Data 

Model output consist of one or more random variables because the 

model is an input-output transformation and the input variables are 

r.v.’s. 

M/G/1 queueing example:  

• Poisson arrival rate = 0.1 per minute;  
service time ~ N(m = 9.5, s =1.75). 

• System performance: long-run mean queue length, LQ(t). 

• Suppose we run a single simulation for a total of 5,000 minutes 

– Divide the time interval [0, 5000) into 5 equal subintervals of 
1000 minutes. 

– Average number of customers in queue from time (j-1)1000 to 
j(1000) is Yj . 
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2. Stochastic Nature of Output Data 

M/G/1 queueing example (cont.):  

• Batched average queue length for 3 independent replications: 

 

 

 

 

 

 

• Inherent variability in stochastic simulation both within a single 
replication and across different replications. 

• The average across 3 replications,                can be regarded as 
independent observations, but averages within a replication, Y11, 
…, Y15, are not. 

1, Y1j 2, Y2j 3, Y3j

[0, 1000) 1 3.61 2.91 7.67

[1000, 2000) 2 3.21 9.00 19.53

[2000, 3000) 3 2.18 16.15 20.36

[3000, 4000) 4 6.92 24.53 8.11

[4000, 5000) 5 2.82 25.19 12.62

[0, 5000) 3.75 15.56 13.66

ReplicationBatching Interval 

(minutes) Batch, j

,,, .3.2.1 YYY
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3. Absolute Measures 

Consider the estimation of a performance parameter, q (or f), of a 

simulated system. 

It is desired to have a “point estimate” and an “interval estimate” 

of q (or f) 

• In many cases, there is an obvious or natural choice candidate 
for a point estimator. Sample mean is such an example 

• Interval estimates expand on “point estimates” by incorporating 
the uncertainty of point estimates 

– Different samples from different intervals may have different 
means 

– An interval estimate quantifies this uncertainty by 
computing lower and upper values with a given level of 
confidence (i.e., probability) 
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3. Absolute Measures 

Simulation output data are of the form {Y1,Y2,…,Yn} for estimating q is 

referred to as discrete-time data, because the index n is discrete valued 

The simulation data of the form {Y(t), 0  t  TE} is referred to as 

continuous-time data with time-weighted mean f because the index t is 

continuous valued. 

Point estimation for discrete time data. 

• The point estimator: 

 

 

– Is unbiased if its expected value is q, that is if: 

– Is biased if: qq )ˆ(E Desired 

qq )ˆ(E
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3. Absolute Measures: Point Estimator  

Point estimation for continuous-time data. 

• The point estimator: 

 

 

– Is biased in general where:               . 

– An unbiased or low-bias estimator is desired. 

Usually, system performance measures can be put into the common 

framework of q or f: 

• e.g., the proportion of days on which sales are lost through an out-
of-stock situation, let: 
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3. Absolute Measures : Point Estimator  

Performance measure that does not fit this common framework is a 

“quantile” or “percentile” 

 

 

• e.g., p=0.85; 85% of the customers will experience a delay of q 
minutes are less. Or a customer has only a 0.15 probability of 
experiencing a delay longer than q minutes. 

• Estimating quantiles: the inverse of the problem of estimating a 
proportion or probability. In estimating probability, a proportion q is 
given and p is to be estimated; but in estimating a quantile, p is 
given and q is to be estimated. 

• Consider a histogram of the observed values Y: 

– Find     such that 100p% of the histogram is to the left of (smaller 
than)    . 

– e.g., if we observe n=250 customer delays, then an estimate    of 
the 85th percentile of delay is a value such that (0.85)(250)=212.5 
213 of the observed values are less than or equal to q. 

q̂

pY  }Pr{ q

q̂
q̂
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3. Absolute Measures: Confidence-Interval 

Estimation 

To understand confidence intervals fully, it is important to 

distinguish between measures of error, and measures of risk 

• contrast the confidence interval with a prediction interval 
(another useful output-analysis tool). 

• Both confidence and prediction intervals are based on premise 
that the data being produced by the simulation is well 
represented by a probability model 
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3. Absolute Measures: Confidence-Interval 

Estimation 

Consider a manufacturing system producing parts and the performance 

measure is cycle time for parts (time from release into the factory until 

completion). Yij is the cycle time for jth part produced in i replication. 

 

Within Replication Data Across Replication 

Data 

Y11  Y12    …… Y1n1 

Y21  Y22    …… Y2n2 

……… 

YR1  YR2    …… YRnR 

 

1

2

1.1 ,, HSY

2

2

2.2 ,, HSY

RRR HSY ,, 2

.

HSY ,, 2

.. H is confidence interval half-width 
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3. Absolute Measures: Confidence-Interval 

Estimation 

Suppose the model is the normal distribution with mean q, variance 

s2 (both unknown). 

• Let      be the average cycle time for parts produced on the ith 
replication (representing a day of production) of the 
simulation. 

–  Therefore, its mathematical expectation is q and let s be 
the day-to-day variation of the average cycle-time 

• Suppose our goal is to estimate q 

• Average cycle time will vary from day to day, but over the 
long-run the average of the averages will be close to q. 

• The natural estimator for q is the overall sample mean of R 
independent replications,                 , but it is not q, is only 
estimate  

• A confidence interval (CI) is a measure of that error 

• Let Sample variance across R replications: 

 



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3. Absolute Measures: Confidence-Interval 

Estimation 

Confidence Interval (CI): 

• A measure of error. 

• Assumes Yi. are normally distributed. 

 

 

• We cannot know for certain how far     is from q  but CI attempts 
to bound that error. 

• A CI, such as 95%, tells us how much we can trust the interval to 
actually bound the error between    and q . 

• The more replications we make, the less error there is in      
(converging to 0 as R goes to infinity). 

• Unfortunately, the confidence interval itself may be wrong!! 

ondistributi- tof quantile  theis     where, 1,2/1,2/..  RR t
R

S
tY 

..Y

..Y

..Y
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3. Absolute Measures: Confidence-Interval Estimation 

Prediction Interval (PI):      

• A measure of risk. 

• A good guess for the average cycle time on a particular day is 
our estimator but it is unlikely to be exactly right as the daily 
average varies. 

• PI is designed to be wide enough to contain the actual average 
cycle time on any particular day with high probability. 

• Normal-theory prediction interval: 

 

 

 

• The length of PI will not go to 0 as R increases because we can 
never simulate away risk. 

• PI’s limit is:                      indicating no matter how much we 
simulate, the daily average still varies. 

R
StY R

1
11,2/..  

sq  2/z
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3. Absolute Measures: Confidence-Interval Estimation 

Example: 

• Suppose that the overall average of the average cycle 
time on 120 replications of a manufacturing simulation 
is 5.80 hours, with a sample standard deviation of 1.60 
hours 

• Since t0.025,119=1.98, a 95% confidence interval for the 
long-run expected daily average cycle time is 
5.801.98(1.60/120) or 5.800.29 hours. 

– Our best guess for average cycle time is 5.80 hours, 
but there could be as much as 0.29 hours error in 
that estimate 

• On any particular day, we are 95% confident that the 
average cycle time for all parts produced on that day 
will be 5.801.98(1.60)(1+1/120) = 5.803.18 hours!! 
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4. Output Analysis for Terminating Simulations 

A terminating simulation: runs over a simulated time interval [0, TE] 

and results in observations Y1, …, Yn 

The sample size n may be a fixed number or a random variable. 

A common goal is to estimate: 

 

 

 

 

In general, independent replications (R) are used, each run using a 

different random number stream and independently chosen initial 

conditions. 

E

E

n

i

i

TttYdttY
T

E

Y
n

E


























0),(output  continuousfor    ,)(
1

output discretefor             ,
1

ET

0

1

f

q



20 

4. Output Analysis for Terminating Simulations: 

Statistical Background 

It is very important to distinguish within-replication data from 

across-replication data. 

The issue is further confused by the fact that simulation languages 

only provide summary of the measures and not the raw data. 

For example, consider simulation of a manufacturing system 

• Two performance measures of that system: cycle time      for 
parts and work in process (WIP). 

• Let Yij be the cycle time for the jth part produced in the ith 
replication. 

• Across-replication data are formed by summarizing within-
replication data 

.iY
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4. Output Analysis for Terminating Simulations: 

Statistical Background 

Across Replication: 

• For example: the daily cycle time averages (discrete time data) 

– The average: 

 

– The sample variance: 

 

– The confidence-interval half-width: 

Within replication: 

• For example: the WIP (a continuous time data) 

– The average: 

 

– The sample variance: 
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4. Output Analysis for Terminating Simulations: 

Statistical Background 

Overall sample average,    , and the interval replication sample 

averages,    ,  are always unbiased estimators of the expected daily 

average cycle time or daily average WIP. 

 

Across-replication data are independent (different random numbers) 

and identically distributed (same model), but within-replication data 

do not have these properties. 

..Y
.iY
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4. Output Analysis for Terminating Simulations: C.I. 

with Specified Precision 

Sometimes we would like to estimate CI with a specified precision 

The half-length H of a 100(1 – )% confidence interval for a mean q, 

based on the t distribution, is given by: 

 

 

 

Suppose that an error criterion e is specified with probability 1 - , a 

sufficiently large sample size should satisfy: 

(in other words, it is desired to estimate q by      ) 

R

S
tH R 1,2/  

R is the # of 

replications 

S2 is the sample 

variance 

  eq  1..YP

..Y



24 

4. Output Analysis for Terminating Simulations: C.I. 

with Specified Precision 

Assume that an initial sample of size R0 (independent) 
replications has been observed. 

Obtain an initial estimate S
0

2 of the population variance s2. 

Then, choose sample size R such that R  R0: 

• Since t/2, R-1  z/2, an initial estimate of R: 

 

 

• R is the smallest integer satisfying R  R0  and 

Collect R - R0 additional observations. 

The 100(1-)% C.I. for q : 
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4. Output Analysis for Terminating Simulations: C.I. 

with Specified Precision 

Call Center Example: estimate the agent’s utilization r over the first 2 hours of the 
workday. 

• Initial sample of size R0 = 4 is taken and an initial estimate of the population 
variance is S

0
2 = (0.072)2 = 0.00518. 

• The error criterion is e = 0.04 and confidence coefficient is 1- = 0.95, hence, the 
final sample size must be at least: 

 

 

• For the final sample size: 

 

 

 

• R = 15 is the smallest integer satisfying the error criterion, so R - R0 = 11 
additional replications are needed. 

• After obtaining additional outputs, half-width should be checked. 

14.12
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4. Output Analysis for Terminating Simulations: 

Quantiles 

To present the interval estimator for quantiles, 

• it is helpful to look at the interval estimator for a mean in 
the special case when mean represents a proportion or 
probability, p 

In this book, a proportion or probability is treated as a special 

case of a mean. 
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4. Output Analysis for Terminating Simulations: 

Quantiles 

When the number of independent replications Y1, …, YR is large 

enough that t/2,n-1 = z/2, the confidence interval for a probability p 

is often written as: 

 

 

 

A quantile is the inverse of the probability to the probability 

estimation problem:  

    

1
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4. Output Analysis for Terminating Simulations: 

Quantiles 

The best way is to sort the outputs and use the (R*p)th smallest 
value, i.e., find q such that 100p% of the data in a histogram of Y is 
to the left of q. 

• Example: If we have R=10 replications and we want the p = 0.8 
quantile, first sort, then estimate q by the (10)(0.8) = 8th smallest 
value (round if necessary). 

 

 

5.6 sorted data 

7.1 

8.8 

8.9 

9.5 

9.7 

10.1 

12.2 this is our point estimate 

12.5 

12.9 
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4. Output Analysis for Terminating Simulations: 

Quantiles 

1

)1(

1
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 Confidence Interval of Quantiles:  An approximate (1-)100% 

confidence interval for q can be obtained by finding two values 

ql  and qu. 

 ql cuts off 100pl% of the histogram (the Rpl smallest value of the 

sorted data). 

 qu cuts off 100pu% of the histogram (the Rpu smallest value of the 

sorted data). 
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4. Output Analysis for Terminating Simulations: 

Quantiles 

Consider a single run of a simulation model to estimate a steady-
state or long-run characteristics of the system. 

• The single run produces observations Y1, Y2, ... (generally the 
samples of an autocorrelated time series). 

• Performance measure: 

 

 

 

 

 

– Independent of the initial conditions. 
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5. Output Analysis for Steady-State Simulation 

The sample size is a design choice, with several considerations in 
mind: 

• Any bias in the point estimator that is due to artificial or 
arbitrary initial conditions (bias can be severe if run length is too 
short). 

• Desired precision of the point estimator. 

• Budget constraints on computer resources. 

Notation: the estimation of q from a discrete-time output process. 

• One replication (or run), the output data: Y1, Y2, Y3, … 

• With several replications, the output data for replication r: Yr1, 
Yr2, Yr3, … 
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5. Output Analysis for Steady-State Simulation: 

Initialization Bias 

Methods to reduce the point-estimator bias caused by using artificial 
and unrealistic initial conditions: 

• Intelligent initialization. 

• Divide simulation into an initialization phase and data-collection 
phase. 

Intelligent initialization 

• Initialize the simulation in a state that is more representative of 
long-run conditions. 

• If the system exists, collect data on it and use these data to specify 
more nearly typical initial conditions. 

• If the system can be simplified enough to make it mathematically 
solvable, e.g. queueing models, solve the simplified model to find 
long-run expected or most likely conditions, use that to initialize the 
simulation. 
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5. Output Analysis for Steady-State Simulation: 

Initialization Bias 

Divide each simulation into two phases: 

• An initialization phase, from time 0 to time T0. 

• A data-collection phase, from T0 to the stopping time T0+TE. 

• The choice of T0 is important: 

– After T0, system should be more nearly representative of steady-
state behavior. 

• System has reached steady state: the probability distribution of the 
system state is close to the steady-state probability distribution 
(bias of response variable is negligible). 
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5. Output Analysis for Steady-State Simulation: 

Initialization Bias 

M/G/1 queueing example: A total of 10 independent replications were 

made. 

• Each replication beginning in the empty and idle state. 

• Simulation run length on each replication was T0+TE = 15,000 
minutes. 

• Response variable: queue length, LQ(t,r) (at time t of the rth 
replication). 

• Batching intervals of 1,000 minutes, batch means 

Ensemble averages:  

• To identify trend in the data due to initialization bias 

• The average corresponding batch means across replications: 

 

 

• The preferred method to determine deletion point. 
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5. Output Analysis for Steady-State Simulation: Error 

Estimation 

If {Y1, …, Yn} are not statistically independent, then S2/n is a biased 

estimator of the true variance. 

• Almost always the case when {Y1, …, Yn} is a sequence of 
output observations from within a single replication 
(autocorrelated sequence, time-series). 

Suppose the point estimator q is the sample mean 

 

 

• Variance of     is almost impossible to estimate. 

• For system with steady state, produce an output process that 
is approximately covariance stationary (after passing the 
transient phase). 

– The covariance between two random variables in the time 
series depends only on the lag (the # of observations 
between them). 
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5. Output Analysis for Steady-State Simulation: Error 

Estimation 

For a covariance stationary time series, {Y1, …, Yn}: 

• Lag-k autocovariance is: 

 

• Lag-k autocorrelation is: 

 

If a time series is covariance stationary, then the variance of      is: 

 

 

 

The expected value of the variance estimator is: 
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5. Output Analysis for Steady-State Simulation: Error 

Estimation 

Stationary time series Yi 

exhibiting positive 

autocorrelation. 

 

Stationary time series Yi 

exhibiting negative 

autocorrelation. 

 

Nonstationary time series with 

an upward trend 
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5. Output Analysis for Steady-State Simulation: Error 

Estimation 

The expected value of the variance  estimator is: 

 

 

 

• If Yi are independent, then S2/n is an unbiased estimator of  

• If the autocorrelation rk are primarily positive, then S2/n is 
biased low as an estimator of           . 

• If the autocorrelation rk are primarily negative, then S2/n is 
biased high as an estimator of          . 
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5. Output Analysis for Steady-State Simulation: 

Replication Method 

Use to estimate point-estimator variability and to construct a 
confidence interval. 

Approach: make R replications, initializing and deleting from each 
one the same way. 

Important to do a thorough job of investigating the initial-condition 
bias: 

• Bias is not affected by the number of replications, instead, it is 
affected only by deleting more data (i.e., increasing T0) or 
extending the length of each run (i.e. increasing TE). 

Basic raw output data {Yrj, r = 1, ..., R; j = 1, …, n} is derived by: 

• Individual observation from within replication r. 

• Batch mean from within replication r of some number of 
discrete-time observations. 

• Batch mean of a continuous-time process over time interval j. 
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5. Output Analysis for Steady-State Simulation: Batch 

Means for Interval Estimation 

Using a single, long replication: 

• Problem: data are dependent so the usual estimator is biased. 

• Solution: batch means. 

Batch means: divide the output data from 1 replication (after appropriate 

deletion) into a few large batches and then treat the means of these batches 

as if they were independent. 

A continuous-time process, {Y(t), T0  t  T0+TE}: 

• k batches of size m = TE/k, batch means: 

 

 

A discrete-time process, {Yi, i = d+1,d+2, …, n}: 

• k batches of size m = (n – d)/k, batch means: 
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5. Output Analysis for Steady-State Simulation : Batch 

Means for Interval Estimation 

 

 

 

Starting either with continuous-time or discrete-time data, the 
variance of the sample mean is estimated by: 

 

 

If the batch size is sufficiently large, successive batch means will be 
approximately independent, and the variance estimator will be 
approximately unbiased. 

No widely accepted and relatively simple method for choosing an 
acceptable batch size m (see text for a suggested approach). Some 
simulation software does it automatically. 
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