Verification and Validation of
Simulation Models



Purpose & Overview

¢ The goal of the validation process is:

» To produce a model that represents
true behavior closely enough for
decision-making purposes

* To increase the model’s credibility to an
acceptable level
e \/alidation is an integral part of model
development:

* Verification: building the model
correctly, correctly implemented with
good input and structure

» Validation: building the correct model,
an accurate representation of the real
system

¢ Most methods are informal subjective
comparisons while a few are formal
statistical procedures




Verification and Validation
of Simulation Models

 Verification: concerned with building the model right. It is
utilized in the comparison of the conceptual model to the
computer representation that implements that conception.

|t asks the questions: Is the model implemented correctly
In the computer?

 Are the input parameters and logical structure of the model
correctly represented?
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Verification and Validation
of Simulation Models (cont.)

 Validation: concerned with building the right model. It is utilized
to determine that a model is an accurate representation of the real
system.

« Validation is usually achieved through the calibration of the
model, an iterative process of comparing the model to actual
system behavior and using the discrepancies between the two,
and the insights gained, to improve the model.

« This process Is repeated until model accuracy is judged to be
acceptable.
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Modeling-Building, Verification & Validation

¢ Steps in Model-Building
o Real system
» Observe the real system

o Interactions among the
components

o Collecting data on the
behavior

» Conceptual model

Construction of a conceptual
model

* Simulation program
Implementation of an
operational model

-~

and
validation

Calibration

Real system

Conceptual
validation

Conceptual model

l. Assumplions on system components

2, Structural assumptions, which define
the interactions between system
components

3. Input parameters and data assumptions

Model
verification
L i

Operational model

*  (Computenized
representation)




Verification of Simulation Models

Many common sense suggestions can be given for use in the
verification process.

1. Have the code checked by someone other than the programmer.

2. Make a flow diagram which includes each logically possible action a
system can take when an event occurs, and follow the model logic
for each action for each event type.

3. Closely examine the model output for reasonableness under a variety
of settings of the input parameters. Have the code print out a wide
variety of output statistics.

4. Have the computerized model print the input parameters at the end
of the simulation, to be sure that these parameter values have not
been changed inadvertently.
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Verification of Simulation Models

5. Make the computer code as self-documenting as possible.
Give a precise definition of every variable used, and a
general description of the purpose of each major section of
code.

These suggestions are basically the same ones any
programmer would follow when debugging a computer
program.
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Examination of Model Output for
Reasonableness

e Two statistics that give a quick indication of model
reasonableness are current contents and total counts

e Current content: The number of items in each component of
the system at a given time.

e Total counts: Total number of items that have entered each
component of the system by a given time.

e Compute certain long-run measures of performance, e.q.

compute the long-run server utilization and compare to
simulation results.



Examination of Model Output for
Reasonableness

e A model of a complex network of queues consisting
of many service centers.

o If the current content grows in a more or less linear fashion as

the simulation run time increases, it is likely that a queue is
unstable

e If the total count for some subsystem is zero, indicates no
items entered that subsystem, a highly suspect occurrence

o If the total and current count are equal to one, can indicate

that an entity has captured a resource but never freed that
resource,




Documentation

® Documentation

* A means of clarifying the logic of a model and verifying its
completeness.

* Comment the operational model
» definition of all variables (default values?)

definition of all constants (default values?)

functions and parameters

relationship of objects

etc.

e Default values should be explained!



Trace

e A trace is a detailed printout of the state of the simulation
model over time.

¢ Can be very labor intensive if the programming language
does not support statistic collection.

e Labor can be reduced by a centralized tracing mechanism

¢ In object-oriented simulation framework, trace support
can be integrated into class hierarchy. New classes need
only to add little for the trace support.



Trace: Example

¢ Simple queue from Chapter 2
® Trace over a time interval [0, 16]
¢ Allows the test of the results by pen-and-paper method

Definition of Variables:

CLOCE = Simulation clock

EVITYP = Event type (Start, Arriwal, Departure, Stop)
NHCUST = Number of customers in system at time CLOCE
STATUS = Status of server (l=busy, 0=idle)

State of System Just After the Named Fvent Ocours:
CLOCE = 0 ENVTYP = Start HCUOST=0 STATUS = 0

IC!LDCK = 3 EVIYP = Arrival NCUST=1 STATUS = 0 |

CLOCK = 5 EVTYP = Depart NCUST=0 STATUS = 0 '\

CLOCE = 11 EVTYP = Arrival NCUST=1 STATUS = 0 | Thereis a customer,
CLOCK = 12 EVTYP = Arrival NCUST=2 STATUS = 1 but the status is 0
CLOCK = 16 EVTYP = Depart NCUST=1 STATUS = 1




Calibration and Validation of Models

Compare model -
Initial
to reality Model
Revise
Compare

rewsed model _ o
First revision
of model
to reality

Rewse
Compare 2nd
rewsed model Second
revision
to reality of model
Rewse

<l|terative process of calibrating a model>
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* Validation: the overall process of comparing the model
and its behavior to the real system.

e Calibration: the iterative process of comparing the model
to the real system and making adjustments.

e Comparison of the model to real system

e Subjective tests

* People who are
knowledgeable
about the system

» Objective tests

* Requires data on the real
system’s behavior and the
output of the model



Validation of Simulation Models

As an aid in the validation process, Naylor and Finger
formulated a three-step approach which has been widely
followed:

1. Build a model that has high face validity.
2. Validate model assumptions.

3. Compare the model input-output transformations to
corresponding input-output transformations for the real
system.
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Validation: 1. High Face Validity

¢ Ensure a high degree of realism:

¢ Potential users should be involved in model construction from
its conceptualization to its implementation.

e Sensitivity analysis can also be used to check a model’s
face validity.

* Example: In most queueing systems, if the arrival rate of
customers were to increase, it would be expected that server
utilization, queue length and delays would tend to increase.

* For large-scale simulation models, there are many input
variables and thus possibly many sensitivity tests.

* Sometimes not possible to perform all of theses tests, select the
most critical ones.



Validation: 2. Validate Model Assumptions

¢ General classes of model assumptions:
e Structural assumptions: how the system operates.
e Data assumptions: reliability of data and its statistical
analysis.

¢ Bank example: customer queueing and service facility in a
bank.
e Structural assumptions
e Customer waiting in one line versus many lines
e Customers are served according FCFS versus priority

e Data assumptions, e.qg., interarrival time of customers, service
times for commercial accounts.

» Verify data reliability with bank managers
* Test correlation and goodness of fit for data



Validation:
3. Validate Input-Output Transformation

* Goal: Validate the model’s ability to predict future behavior
*» The only objective test of the model.

* The structure of the model should be accurate enough to make good
predictions for the range of input data sets of interest,

® One possible approach: use historical data that have been
reserved for validation purposes only.

® Criteria: use the main responses of interest.

Input Out ui
p p
. . Model is viewed as an
input-output
transformation
—~_ =




Validation of Model Assumptions

The analysis of input data from a random sample consists of
three steps:

1. Identifying the appropriate probability distribution
2. Estimating the parameters of the hypothesized distribution

3. Validating the assumed statistical model by a goodness-of
fit test, such as the chi-square or Kolmogorov-Smirnov test,
and by graphical methods.
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Bank Example

Example: One drive-in window serviced by one teller, only
one or two transactions are allowed.

e Data collection: 90 customers during 11am to 1pm
» Observed service times {5, i =1.2. .... 90}
* Observed interarrival times {4, i =1.2. .... 90}

¢ Data analysis let to the conclusion that:

e Interarrival times: exponentially distributed
with rate 2 = 45/hour _Input variables

e Service times: N(1.1.0.29)




Bank Example: The Black Box

¢ A model was developed in close consultation with bank
management and employees

¢ Model assumptions were validated
¢ Resulting model is now viewed as a "black box":

Input Variables Model Output Variables, Y

Poisson arrivals Primary interest:

Uncontrolled | | A =45Mr X, Xj.. ... ¥, =teller's utilization

variables, X 7 | Services times, ¥, = average delay

MD, 022): X, X,y Model \ | ¥; = maximum line length
“black box™ /

- X =Y

Controlled D, =1 (one teller) fXD)

Decision < |D,=1.1min ¥, = average service time

variables, D (mean service time) ¥, = sample std. dev. of

| Dy =1 (one line) service times

¥, = average length of time

Secondary interest:
¥, = observed armval rate




Bank Example:
Comparison with Real System Data

¢ Real system data are necessary for validation.

» System responses should have been collected during the same time
period (from 11am to 1pm on the same day.)

Compare average delay from the model 7, with actual delay Z,:
*» Average delay observed z, = 4.3 minutes

* Consider this to be the true mean value y, =4.3

* When the model is run with generated random variates
X, and X, , ¥, should be close to Z,



Bank Example:
Comparison with Real System Data

e Six statistically independent replications of the model,
each of 2-hour duration, are run.

Replication ArﬁvaT;’Huur Service 1"|nI1; [Minutes] | Average Dé;"}" [Minutes]
1 51.0 1.07 2,79
2 40.0 1.12 1.12
3 45.5 1.06 2.24
4 50.5 1.10 345
5 53.0 1.09 3.13
6 49.0 1.07 2.38

Sample mean [Delay] 2.51

Standard deviation [Delay] 0.82




Bank Example: Hypothesis Testing

® Compare the average delay from the model ¥, with the actual
delay z,

» Null hypothesis testing: evaluate whether the simulation and the real
system are the same (w.r.t. output measures):

H,: E(Y,) =43 minutes
H: E(Y,) = 4.3 minutes

» If H, is not rejected, then, there is no reason to consider the model
invalid

» If H, is rejected, the current version of the model is rejected, and
the modeler needs to improve the model



Bank Example: Hypothesis Testing

Conduct the 7 test:
» Chose level of significance (a = 0.05) and sample size (n =6).

e Compute the sample mean and sample standard deviation
over the » replications:

R
_ 1. i . | B
¥, =—N I, =251 minutes _ |Z‘~}1- )
B - 5= u— =(.82
n-—1

nunutes

» Compute test statistics:

251-43

082//6

‘ Y, —u, ‘
S

ol Ts7l

= 534 > tygss =2.971 (for a 2-sided test)

* Hence, reject H,.
e Conclude that the model is inadequate.

» Check: the assumptions justifying a r test, that the
observations (¥,;) are normally and independently distributed.



Bank Example: Hypothesis Testing

e Similarly, compare the model output with the observed output
for other measures:

Yy= 24

Ys < Zs

Yo = Zs



Power of a test

¢ For validation:

The power of a test is the probability of detecting an invalid model.

Power =1 - P(failing to reject H, | H, 15 true)
=1- P(Type Il error)
-1-B

» Consider failure to reject H, as a strong conclusion, the modeler
would want g to be small.



Power of a test

¢ Value of  depends on:
* Sample size »

* The true difference, 6, between E(7) and u

5 E(X) -4

a

¢ In general, the best approach to control g is:
» Specify the critical difference, o.

» Choose a sample size, n, by making use of the operating
characteristics curve (OC curve).



Power of a test
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Power of a test

e Typelerror (a):

» Error of rejecting a valid model.

» Controlled by specifying a small level of significance «.

e Type II error (B):

» Error of accepting a model as valid when it is invalid.

» Controlled by specifying critical difference and find the n.

For a fixed sample size », increasing « will decrease g.

Statistical Terminology

Modeling Terminology

Associated Risk

Type |: rejecting H, when H, is true

Rejecting a valid model

Type II: failure to reject H, when H, is true

Failure to reject an invalid
model




Confidence Interval Testing

¢ Confidence interval testing: evaluate whether the
simulation and the real system performance

measures are close enough.
e If Yis the simulation output and u = E(1)
* The confidence interval (CI) for u is:

, S = S
V-1, —. Y+, ,—
2" n oA



Confidence Interval Testing

e CI does not contain u: e CI contains u,
¢ If the best-case erroris > ¢, model ¢ If either the best-case or worst-
needs to be refined. case error is > ¢, additional
replications are necessary.

¢ If the worst-case error is < &,
accept the model.

¢ If the worst-case erroris < &,
accept the model.

* If best-case error is = ¢, additional
replications are necessary.

g is a difference value chosen by the analyst, that
is small enough to allow valid decisions to be
based on simulations!

best case best case

i L 1 .
- 1

7 * -

A
+—

.

WOrst case T worst case I

1, 1s the unknown true value




Confidence Interval Testing

¢ Bank example: u,=4.3, and "close enough” is ¢ = 1 minute of
expected customer delay.

* A 95% confidence interval, based on the 6 replications is
[1.65, 3.37] because:

* u,=423 falls outside the confidence interval,
¢ the best case [3.37 -4.3] =0.93 <1, but
¢ the worst case |1.65 -4.3| = 2.65> 1

»Additional replications are needed to reach a decision.



Other approaches

Using Historical Output Data

e An alternative to generating input data:
» Use the actual historical record.

» Drive the simulation model with the historical record and then
compare model output to system data.

* In the bank example, use the recorded interarrival and service times
for the customers {4, 5 n=12..}.

e Procedure and validation process: similar to the approach used
for system generated input data.



Using a Turing Test

e Use in addition to statistical test, or when no statistical test is
readily applicable.

Turing Test

Descnbed by Alan Turing in 1950. A human jugde is involved in a natural language conversation
with a human and a machine. If the judge cannot reliably tell which of the partners is the machine,
then the machine has passed the test.

e Utilize persons’ knowledge about the system.

® For example:

 Present 10 system performance reports to a manager of the system.
Five of them are from the real system and the rest are "fake” reports
based on simulation output data.

e If the person identifies a substantial number of the fake reports,
interview the person to get information for model improvement.

o If the person cannot distinguish between fake and real reports with
consistency, conclude that the test gives no evidence of model
inadequacy.



Probability of accepting Hy,

(a) a=0.05

Verification and Validation

36



Probability of accepting H,
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