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Purpose & Overview 

• Input models provide the driving force for a simulation model. 

• The quality of the output is no better than the quality of inputs. 

• In this chapter, we will discuss the 4 steps of input model  
development: 

 
(1) Collect data from the real system 

 
(2) Identify a probability distribution to represent the input  

process 

 
(3) Choose parameters for the distribution 

 
(4) Evaluate the chosen distribution and parameters for  

goodness of fit 



Data Collection 



Data Collection 

• One of the biggest tasks in solving a real problem 
• GIGO: Garbage-In-Garbage-Out 

• Even when model structure is valid simulation results can be  
misleading, if the input data is 
• inaccurately collected 

• inappropriately analyzed 

• not representative of the environment 

Raw Data 
   Input    

Data Output 

System  

Performance  

Simulation 



Data Collection 

• Suggestions that may enhance and facilitate data  
collection: 
•Plan ahead: begin by a practice or pre-observing session,  
watch for unusual circumstances 

•Analyze the data as it is being collected: check adequacy 

•Combine homogeneous data sets: successive time periods,  
during the same time period on successive days 

•Be aware of data censoring: the quantity is not observed in  
its entirety, danger of leaving out long process times 

•Check for relationship between variables (scatter  
diagram) 

•Check for autocorrelation 

•Collect input data, not performance data 



Histograms 

Identifying the Distribution 



Histograms 

• A frequency distribution or histogram is useful in  
determining the shape of a distribution 

 

• The number of class intervals depends on: 
• The number of observations 
• The dispersion of the data 
• Suggested number of intervals: the square root of the sample size 

 

• For continuous data: 
• Corresponds to the probability density function (pdf) of a theoretical  

distribution 

• For discrete data: 
• Corresponds to the probability mass function (pmf) 

 

• If few data points are available 
• combine adjacent cells to eliminate the ragged appearance of the  

histogram 



Histograms 

• Same data with  
different interval sizes 
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Histograms: Example 

Arrivals per  

Period 

 
Frequency 

0 12 

1 10 

2 19 

3 17 

4 10 

5 8 

6 7 

7 5 

8 5 

9 3 

10 3 

11 1 

• Vehicle Arrival Example:  
Number of vehicles arriving at  
an intersection between 7 am  
and 7:05 am was monitored  
for 100 random workdays. 

• There are ample data, so the  
histogram may have a cell for  
each possible value in the  
data range 
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Histograms: Example 

• Life tests were performed on electronic components at 1.5  
times the nominal voltage, and their lifetime was recorded 

Component Life Frequency 

0  x < 3 23 

3  x < 6 10 

6  x < 9 5 

9  x < 12 1 

12  x < 15 1 

… 

42  x < 45 1 

… 

144  x < 147 1 



Histograms: Example 
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• Sample size  

10000 

 

• Histograms with  

different numbers  

of bins 



Histograms: Example 

• BALI Characteristics 
• San Francisco Bay Area 
• Trace length: 24 hour 
• Number of cells: 90 
• Persons per cell: 1100 
• Persons at all: 99.000 

• Active persons: 66.550 
• Move events: 243.951 
• Call events: 1.570.807 

• Question: How to transform the  
BALI information so that it is  
usable with a network simulator,  
e.g., ns-2? 
• Node number as well as connection  

number is too high for ns-2 

Stanford University Mobile Activity Traces (SUMATRA) 

• Target community: cellular  
network research community 

• Traces contain mobility as well  
as connection information 

• Available traces 
• SULAWESI (S.U. Local Area Wireless  

Environment Signaling Information) 

• BALI (Bay Area Location Information) 



Histograms: Example 

• Analysis of the BALI Trace 

• Goal: Reduce the amount of  
data by identifying user groups 

• User group 

• Between 2 local minima 

• Communication characteristic  
is kept in the group 

• A user represents a group 

• Groups with different  
mobility characteristics 
• Intra- and inter group  

communication 

• Interesting characteristic 
• Number of people with odd  

number movements is  
negligible! 0 
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Scatter diagrams 

Identifying the Distribution 



Scatter Diagrams 

• A scatter diagram is a quality tool that can show the  
relationship between paired data 

•Random Variable X = Data 1 

•Random Variable Y = Data 2 

•Draw random variable X on the x-axis and Y on the y-axis 
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Scatter Diagrams 

• Linear relationship 

•Correlation: Measures how well data line up 

•Slope: Measures the steepness of the data 

•Direction 

•Y intercept 
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Identifying the Distribution 

Selecting the Family of Distributions 



Selecting the Family of Distributions 

• A family of distributions is selected based on: 

• The context of the input variable 

• Shape of the histogram 

• Frequently encountered distributions: 

• Easier to analyze: Exponential, Normal, and Poisson 

• Difficult to analyze: Beta, Gamma, and Weibull 



Selecting the Family of Distributions 

• Use the physical basis of the distribution as a guide, e.g.: 

• Binomial: Number of successes in n trials 

• Negative binomial and geometric: Number of trials to achieve  
k successes 

• Poisson: Number of independent events that occur in a fix  
amount of time or space 

• Normal: Distribution of a process that is the sum of a number of  
component processes 

• Lognormal: Distribution of a process that is the product of a  
number of component processes 

• Exponential: Time between independent events, or a process  
time that is memoryless 

• Weibull: Time to failure for components 

• Discrete or continuous uniform: Models complete uncertainty 

• Triangular: A process for which only the minimum, most likely,  
and maximum values are known 

• Empirical: Resamples from the actual data collected 



Selecting the Family of Distributions 

• Remember the physical characteristics of the process 

• Is the process naturally discrete or continuous valued? 

 
• Is it bound? 

 
•Value range? 

• Only positive values 

• Only negative values 

• Interval of [-a:b] 

 
• No “true” distribution for any stochastic input process 

 
• Goal: obtain a good approximation 



Identifying the Distribution 

Quantile-Quantile Plots 



Quantile-Quantile Plots 

• Q-Q plot is a useful tool for evaluating distribution fit 

• If X is a random variable with CDF F, then the q-quantile of X is 

• When F has an inverse,  = F-1(q) 

• where j is the ranking or order number 

the  such that 

F ( )  P( X   )  q , for 0  q  1 

 
 

  
 

 
j 

 j  0.5 

n 
y is approximately F 1 

1 

q 

x 

 

• Let {xi, i = 1,2, …., n} be a sample of data from X 

and {yj, j = 1,2, …, n} be this sample in ascending order: 

F(x) 



Quantile-Quantile Plots 

• The plot of yj versus F-1( ( j - 0.5 ) / n) is 
• Approximately a straight line if F is a member of an appropriate  

family of distributions 

• The line has slope 1 if F is a member of an appropriate family of  

distributions with appropriate parameter values 

yj 

F-1() 



Quantile-Quantile Plots: Example 

• Example: Door installation  
times of a robot follows a  
normal distribution. 

• The observations are ordered  
from the smallest to the  
largest 

• yj are plotted versus 
F-1((j - 0.5)/n) where F has a  
normal distribution with the  
sample mean (99.99 sec) and  
sample variance (0.28322 sec2) 

j Value 

1 99,55 

2 99,56 

3 99,62 

4 99,65 

5 99,79 

6 99,98 

7 100,02 

8 100,06 

9 100,17 

10 100,23 

11 100,26 

12 100,27 

13 100,33 

14 100,41 

15 100,47 



Quantile-Quantile Plots: Example 

• Example (continued): Check whether the door installation times follow  
a normal distribution. 
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Quantile-Quantile Plots 

• Consider the following while evaluating the linearity of a  
Q-Q plot: 

•The observed values never fall exactly on a straight line 

•The ordered values are ranked and hence not independent,  
unlikely for the points to be scattered about the line 

•Variance of the extremes is higher than the middle. Linearity  
of the points in the middle of the plot is more important. 



Quantile-Quantile Plots 

• Q-Q plot can also be used to check homogeneity 

• It can be used to check whether a single distribution can represent  
two sample sets 

• Given two random variables 
• X and x1, x2, …, xn 

• Z and z1, z2, …, zn 

• Plotting the ordered values of X and Z against each other reveals  
approximately a straight line if X and Z are well represented by the  
same distribution 

 
 



Parameter Estimation 





Parameter Estimation 

• When raw data are unavailable (data are grouped into  
class intervals), the approximate sample mean and  
variance are: 

2 2  nX  f m  
n n 1 

 
• fj is the observed frequency in the j-th class interval 

• mj is the midpoint of the j-th interval 

• c is the number of class intervals 

 
• A parameter is an unknown constant, but an estimator is  

a statistic. 

f m 
n 

S 2  
 j 1 j j 

     c 

X  
 j 1 j j 



Parameter Estimation: Example 

• Vehicle Arrival Example (continued): Table in the histogram of the  

example on Slide 10 can be analyzed to obtain: 

• The histogram suggests X to have a Poisson distribution 
• However, note that sample mean is not equal to sample variance. 

• Theoretically: Poisson with parameter     = 2 =  

• Reason: each estimator is a random variable, it is not perfect. 

  j j j j 

k 

j 1 

k 

j 1 
f X 2  2080 f X  364, and n  100, f1  12, X1  0, f2  10, X 2  1,... and 

 

• The sample mean and variance are 

99 

364 

 7.63 

2080 100 (3.64)2 
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 3.64 
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Parameter Estimation 

• Maximum-Likelihood Estimators (MLE) 

•Discrete distribution with one parameter θ   pθ(x) 

•Given iid sample X1, X2, …, Xn 

•Likelihood function L(θ) is defined as 

 

L(θ) = pθ(X1) pθ(X2) … pθ(Xn) 

•MLE of the unknown θ is θ’ given by θ that maximizes 
L(θ)   L(θ’) ≥ L(θ) for all values of θ 



Parameter Estimation 

• Maximum-Likelihood Estimators (MLE) 

• Suggested estimators for distributions often used in  

simulation 

Distribution Parameter Estimator 

Poisson  

Exponential  

Gamma ,  

Normal , 2 

Lognormal , 2 

̂     X 

X 
̂  

1 

X 
̂   

1 

̂  X ,̂  2  S 2 

̂  X ,̂  2  S 2 

After taking ln 

of data. 



Parameter Estimation 

• Maximum Likelihood example exponential distribution 



Goodness-of-Fit Tests 



Goodness-of-Fit Tests 

• Conduct hypothesis testing on input data distribution  
using 

•Kolmogorov-Smirnov test 

•Chi-square test 

 
• No single correct distribution in a real application exists 

• If very little data are available, it is unlikely to reject any  
candidate distributions 

• If a lot of data are available, it is likely to reject all candidate  
distributions 



Goodness-of-Fit Tests 

• Be aware of mistakes in decision finding 
•Type I Error:  

• Error of first kind, False positive 

• Reject H0 when it is true 

•Type II Error:  

• Error of second kind, False negative 

• Retain H0 when it is not true 

Statistical  
Decision 

State of the null hypothesis 

H0 True H0 False 

 
Accept H0 

 
Correct 

Type II Error  

Incorrectly accept H0 

False negative 

 
Reject H0 

Type I Error  

Incorrectly reject H0 

False positive 

 
Correct 



Chi-Square Test 

• Intuition: comparing the histogram of the data to the shape of  
the candidate density or mass function 

• Valid for large sample sizes when parameters are estimated by  
maximum-likelihood 

• Arrange the n observations into a set of k class intervals 

• The test statistic is: 

approximately follows the Chi-square distribution with 
k-s-1degrees of freedom 

• s = number of parameters of the hypothesized distribution  
estimated by the sample statistics. 

 
k 

i E 
i1 

0 

(Oi  Ei )
2 

 2  

0 

• 2 

Observed frequency in  

the i-th class 

Expected Frequency 

Ei = n ×pi 

where pi is the theoretical  

prob. of the i-th interval.  

Suggested Minimum = 5 



Chi-Square Test 

• The hypothesis of a Chi-square test is 
• H0: 

• H1: 

The random variable, X, conforms to the distributional  

assumption with the parameter(s) given by the estimate(s). 

The random variable X does not conform. 

• If the distribution tested is discrete and combining adjacent  
cells is not required (so that Ei > minimum requirement): 

• Each value of the random variable should be a class interval, unless  
combining is necessary, and 

pi    p(xi )  P( X  xi ) 

0 0 

0 

Reject H 

Accept H 
Test result  

  ,k s1 

0  ,k s1 

 2   2 

 2   2 



Chi-Square Test 

• If the distribution tested is continuous: 

• where ai-1 and ai are the endpoints of the i-th class interval 

• f(x) is the assumed PDF, F(x) is the assumed CDF 

• Recommended number of class intervals (k): 

• Caution: Different grouping of data (i.e., k) can affect the hypothesis  
testing result. 

 a 
i f (x) dx  F (ai )  F (ai1) p  

ai 

i1 

Sample size (n) Number of class intervals (k) 

20 Do not use the chi-square test 

50 5 to 10 

100 10 to 20 

> 100 n to 
n 

5 



Chi-Square Test: Example 

• Degree of freedom is k-s-1 = 7-1-1 = 5, hence, the hypothesis is  

rejected at the =0.05 level of significance. 

x! 
 n  

Ei  n  p(x) 

 

e   
 x 

• Vehicle Arrival Example (continued): 

H0: the random variable is Poisson distributed. 

H1: the random variable is not Poisson distributed. 

xi Observed Frequency, Oi Expected Frequency, Ei (Oi - Ei)
2/Ei 

0 12 2.6 

2.0 

7.87 

Combined because  
of the assumption of  

min Ei = 5, e.g., 

E1 = 2.6 < 5, hence  

combine with E2 

 11.1  2  27.68   2 

0 0.05,5 

12.2 1 10 22 9.6 

2 19 17.4 0.15 

3 17 21.1 0.8 

4 19 19.2 4.41 
5 6 14.0 2.57 

6 7 8.5 0.26 

7 
8 

5 
5 

4.4 

9 3 17 0.8 7.6 11.62 

10 3 0.3 
> 11 1 0.1 

100 100.0 27.68 



Kolmogorov-Smirnov Test 

• Intuition: formalize the idea behind examining a Q-Q plot 

• Recall 

• The test compares the continuous CDF, F(x), of the hypothesized  
distribution with the empirical CDF, SN(x), of the N sample  
observations. 

• Based on the maximum difference statistic: 

 
D = max| F(x) - SN(x) | 

 
• A more powerful test, particularly useful when: 

• Sample sizes are small 

• No parameters have been estimated from the data 

• When parameter estimates have been made: 
• Critical values are biased, too large. 

• More conservative, i.e., smaller Type I error than specified. 



p-Values and “Best Fits” 

• Hypothesis testing requires a significance level 

• Significance level (α) is the probability of falsely rejecting H0 

• Common significance levels 

• α = 0.1 

• α = 0.05 

• α = 0.01 

• Be aware that significance level does not tell anything about the  
subject of the test! 

• Generalization of the significance level: p-value 

Fail to reject H0 Reject H0 Reject H0 



p-Values and “Best Fits” 

• p-value for the test statistics 

• The significance level at which one would just reject H0 for the given  
test statistic value. 

• A measure of fit, the larger the better 

• Large p-value: good fit 

• Small p-value: poor fit 

 
• Vehicle Arrival Example (cont.): 

• H0: data is Poisson 

• The p-value F(5, 27.68) = 0.00004, meaning we would reject H0 with 
0.00004 significance level, hence Poisson is a poor fit. 

0 • Test statistics:  2  27.68, with 5 degrees of freedom 



p-Values and “Best Fits” 

• Many software use p-value as the ranking measure to  

automatically determine the “best fit”. 

 
• Things to be cautious about: 

• Software may not know about the physical basis of the data,  
distribution families it suggests may be inappropriate. 

• Close conformance to the data does not always lead to the most  
appropriate input model. 

• p-value does not say much about where the lack of fit occurs 

 
• Recommended: always inspect the automatic selection using  

graphical methods. 



Fitting a Non-stationary Poisson Process 



Fitting a Non-stationary Poisson Process 

• Fitting a NSPP to arrival data is difficult, possible  
approaches: 

•Fit a very flexible model with lots of parameters 

•Approximate constant arrival rate over some basic interval of  
time, but vary it from time interval to time interval. 

• Suppose we need to model arrivals over time [0, T], our  
approach is the most appropriate when we can: 

•Observe the time period repeatedly 

•Count arrivals / record arrival times 

•Divide the time period into k equal intervals of length t =T/k 

•Over n periods of observation let Cij be the number of arrivals  
during the i-th interval on the j-th period 





Selecting Models without Data 



Selecting Models without Data 

• If data is not available, some possible sources to obtain  
information about the process are: 

•Engineering data: often product or process has performance  
ratings provided by the manufacturer or company rules  
specify time or production standards. 

•Expert option: people who are experienced with the process  
or similar processes, often, they can provide optimistic,  
pessimistic and most-likely times, and they may know the  
variability as well. 

•Physical or conventional limitations: physical limits on  
performance, limits or bounds that narrow the range of the  
input process. 

•The nature of the process. 

• The uniform, triangular, and beta distributions are often  
used as input models. 
•Speed of a vehicle? 



Selecting Models without Data 

• Example: Production planning  
simulation. 

• Input of sales volume of various  
products is required, salesperson  
of product XYZ says that: 

• No fewer than 1000 units and no  

more than 5000 units will be sold. 

• Given her experience, she believes  
there is a 90% chance of selling  
more than 2000 units, a 25%  
chance of selling more than 2500  
units, and only a 1% chance of  
selling more than 4500 units. 

• Translating these information into  

a cumulative probability of being  
less than or equal to those goals  

for simulation input: 

 
i 

 
Interval (Sales) 

 
PDF 

Cumulative  

Frequency, ci 

1 1000 ≤ X ≤ 2000 0.1 0.10 

2 2000 < X ≤ 2500 0.65 0.75 

3 2500 < X ≤ 4500 0.24 0.99 

4 4500 < X ≤ 5000 0.01 1.00 

0,00 

0,20 

0,40 

0,60 

0,80 

1,00 

1,20 

1000 <= X <= 2000 2000 < X <=2500 2500 < X <= 4500 4500 < X <= 5000 



Multivariate and Time-Series Input Models 



Multivariate and Time-Series Input Models 

• The random variable discussed until now were considered to be  
independent of any other variables within the context of the  
problem 

• However, variables may be related 

• If they appear as input, the relationship should be investigated and  
taken into consideration 

• Multivariate input models 

• Fixed, finite number of random variables X1, X2, …, Xk 

• For example, lead time and annual demand for an inventory model 

• An increase in demand results in lead time increase, hence variables  
are dependent. 

• Time-series input models 

• Infinite sequence of random variables, e.g., X1, X2, X3, … 

• For example, time between arrivals of orders to buy and sell stocks 

• Buy and sell orders tend to arrive in bursts, hence, times between  
arrivals are dependent. 







Time-Series 

• A time series is a sequence of random variables X1, X2, X3,…  
which are identically distributed (same mean and  
variance) but dependent. 

• cov(Xt, Xt+h) is the lag-h autocovariance 

• corr(Xt, Xt+h) is the lag-h autocorrelation 

• If the autocovariance value depends only on h and not on t,  
the time series is covariance stationary 

•For covariance stationary time series, the shorthand for lag-h  
is used 

h  corr( Xt  , Xt  h ) 

 

• Notice 

•autocorrelation measures the dependence between random  
variables that are separated by h-1 others in the time series 



Multivariate Input Models 

• If X1 and X2 are normally distributed, dependence between them  
can be modeled by the bivariate normal distribution with 1, 2, 

1 2  2,  2 and correlation  

• To estimate 1, 2, 1
2, 2

2, see “Parameter Estimation” 

• To estimate , suppose we have n independent and identically  
distributed pairs (X11, X21), (X12, X22), … (X1n, X2n), 

 
• Then the sample covariance is 

̂ 1̂ 2 

• The sample correlation is 

̂  
co v̂( X1, X 2 ) 

 
n 

j1 

1 j 1 2 

 

      

( X  X1)(X 2 j  X 2 ) n 1 

1 
)  ˆ cov( X ,X 

Sample deviation 



Multivariate Input Models: Example 

• Let X1 the average lead time to deliver and X2 the annual 
demand for a product. 

• Data for 10 years is available. 

• Lead time and demand are strongly dependent. 
• Before accepting this model, lead time and demand should be  

checked individually to see whether they are represented well by  
normal distribution. 

Lead Time  
(X1) 

Demand  
(X2) 

6,5 103 

4,3 83 

6,9 116 

6,0 97 

6,9 112 

6,9 104 

5,8 106 

7,3 109 

4,5 92 

6,3 96 

2 2  9.93 

1  1.02 

X  101.8,  

X1  6.14, 

côv 
sample 

 8.66 

8.66 
ˆ   

1.02  9.93 
 0.86 

Covariance 



Time-Series Input Models 

• If X1, X2, X3,… is a sequence of identically distributed, but  

dependent and covariance-stationary random variables, then  
we can represent the process as follows: 

• Autoregressive order-1 model, AR(1) 

• Exponential autoregressive order-1 model, EAR(1) 

 
• Both have the characteristics that: 

•Lag-h autocorrelation decreases geometrically as the lag  
increases, hence, observations far apart in time are nearly  
independent 

for h  1,2,... 
h 

h  corr( X t , X t h )   , 



Time-Series Input Models:  
Autoregressive order-1 model AR(1) 

• To estimate  , 
2 : 

for t  2,3,... 

• Consider the time-series model: 

Xt   ( Xt 1  )  t , 

2 3 

• If initial value X1 is chosen appropriately, then 

• X1, X2, … are normally distributed with 

mean = , and variance = /(1-) 

• Autocorrelation h = h 

  where   ,  , are i.i.d. normally distributed with   0 and variance  2 

̂ 2 
̂  

cô v( Xt  , Xt  1) 

where co v̂( Xt , Xt 1) is the lag-1autocovariance 

 X , ̂ ˆ ˆ ˆ 2 2  2 

 
  (1 ) , 





Summary 

• In this chapter, we described the 4 steps in developing input  
data models: 

(1) Collecting the raw data 

(2) Identifying the underlying statistical distribution 

(3) Estimating the parameters 

(4) Testing for goodness of fit 


