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Purpose & Overview

e Input models provide the driving force for a simulation model.

The quality of the output is no better than the quality of inputs.

In this chapter, we will discuss the 4 steps of input model
development:

(1) Collect data from the real system

(2) Identify a probability distribution to represent the input
process

(3) Choose parameters for the distribution

(4) Evaluate the chosen distribution and parameters for
goodness of fit



Data Collection



Data Collection

® One of the biggest tasks in solving a real problem
e GIGO: Garbage-In-Garbage-Out

System
Input
Raw Data Data Performqnce " Output
e Simulation

e Even when model structure is valid simulation results can be
misleading, if the input data is
e inaccurately collected
e inappropriately analyzed
e not representative of the environment

A




Data Collection

® Suggestions that may enhance and facilitate data
collection:

e Plan ahead: begin by a practice or pre-observing session,
watch for unusual circumstances
e Analyze the data as it is being collected: check adequacy

e Combine homogeneous data sets: successive time periods,
during the same time period on successive days

e Be aware of data censoring: the quantity is not observed in
its entirety, danger of leaving out long process times

e Check for relationship between variables (scatter
diagram)

e Check for autocorrelation
e Collect input data, not performance data



Identifying the Distribution
Histograms



Histograms

A frequency distribution or histogram is useful in
determining the shape of a distribution

The number of class intervals depends on:

e The number of observations

e The dispersion of the data

e Suggested number of intervals: the square root of the sample size

For continuous data:

e Corresponds to the probability density function (pdf) of a theoretical
distribution

For discrete data:
e Corresponds to the probability mass function (pmf)

If few data points are available

e combine adjacent cells to eliminate the ragged appearance of the
histogram



Histograms

e Same data with
different interval sizes

02468 101214161820

4 8 12 16 20

40




Histograms: Example

® \/ehicle Arrival Example:
Number of vehicles arriving at
an intersection between 7 am
and 7:05 am was monitored
for 100 random workdays.

® There are ample data, so the
histogram may have a cell for
each possible value in the
data range
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Histograms: Example

e Life tests were performed on electronic components at 1.5
times the nominal voltage, and their lifetime was recorded
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Histograms: Example
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Histograms: Example

Stanford University Mobile Activity Traces (SUMATRA)

e Target community: cellular
network research community

e Traces contain mobility as well
as connection information

e Available traces

e SULAWESI (S.U. Local Area Wireless
Environment Signaling Information)

e BALI (Bay Area Location Information)

e BALI Characteristics
e San Francisco Bay Area
e Trace length: 24 hour
e Number of cells: 90
e Persons per cell: 1100
e Persons at all: 99.000

o Acti : ® (Question: How to transform the
Active persons: 66.550 BALI information so that it is

e Move events: 243.951 : _
e Call events: 1.570.807 gtsg-tlalre]sv_vit?h a network simulator,

e Node number as well as connection
number is too high for ns-2



Histograms: Example

® Analysis of the BALI Trace
e Goal: Reduce the amount of
data by identifying user groups
e User group
e Between 2 local minima
e Communication characteristic
is kept in the group
e A user represents a group
® Groups with different
mobility characteristics om0
e Intra- and inter group
communication

® Interesting characteristic

e Number of people with odd ‘ ‘
number movements is /\ /\/\ .
negligible! J VYV VN
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Identifying the Distribution
Scatter diagrams



Scatter Diagrams
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® A scatter diagram is a quality tool that can show the
relationship between paired data

e Random Variable X =Data 1
e Random Variable Y = Data 2

e Draw random variable X on the x-axis and Y on the y-axis
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Scatter Diagrams

® |inear relationship
e Correlation: Measures how well data line up
e Slope: Measures the steepness of the data
e Direction
e Y intercept
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Identifying the Distribution
Selecting the Family of Distributions



Selecting the Family of Distributions

e A family of distributions is selected based on:

e The context of the input variable
e Shape of the histogram

® Frequently encountered distributions:
e Easier to analyze: Exponential, Normal, and Poisson
f(x) fx) 4
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e Difficult to analyze: Beta, Gamma, and Weibull
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Selecting the Family of Distributions

Use the physical basis of the distribution as a guide, e.q.:
e Binomial: Number of successes in n trials

e Negative binomial and geometric: Number of trials to achieve
K successes

e Poisson: Number of independent events that occur in a fix
amount of time or space

e Normal: Distribution of a process that is the sum of a number of
component processes

e Lognormal: Distribution of a process that is the product of a
number of component processes

e Exponential: Time between independent events, or a process
time that is memoryless

e Weibull: Time to failure for components
e Discrete or continuous uniform: Models complete uncertainty

e Triangular: A process for which only the minimum, most likely,
and maximum values are known

e Empirical: Resamples from the actual data collected



Selecting the Family of Distributions

e Remember the physical characteristics of the process
e Is the process naturally discrete or continuous valued?

e Is it bound?

e Value range?

e Only positive values
e Only negative values
e Interval of [-a:b]

® No “true” distribution for any stochastic input process

® Goal: obtain a good approximation



Identifying the Distribution
Quantile-Quantile Plots



Quantile-Quantile Plots

® (-Q plot is a useful tool for evaluating distribution fit

e If Xis a random variable with CDF F, then the g-quantile of X is
the ysuch that

F(x)
F(y)=P(X<y)=q, forO<qg<l 1
g
e When F has an inverse, y= F1(q)
—_— i 5 X
Y
® |let{x,i=12,....n}be asample of data from X

and {y;, j=1,2,...,n} be this sample in ascending order:

y; is approximately F —0.53
N

e where j is the ranking or ordernumber



Quantile-Quantile Plots

® The plot of y;versus F1((j-0.5)/n)is
e Approximately a straight line if Fis a member of an appropriate
family of distributions

e The line has slope 1 if Fis a member of an appropriate family of
distributions with appropriate parameter values

F1(
A




Quantile-Quantile Plots: Example

e Example: Door installation
times of a robot follows a
normal distribution.

e The observations are ordered
from the smallest to the
largest

- y;are plotted versus
F1((j - 0.5)/n) where F has a
normal distribution with the
sample mean (99.99 sec) and
sample variance (0.28322sec?)
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Quantile-Quantile Plots: Example

e Example (continued): Check whether the door installation times follow
a normal distribution.
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Quantile-Quantile Plots

e Consider the following while evaluating the linearity of a
Q-Q plot:
e The observed values never fall exactly on a straight line
e The ordered values are ranked and hence not independent,
unlikely for the points to be scattered about the line

e Variance of the extremes is higher than the middle. Linearity
of the points in the middle of the plot is more important.
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Quantile-Quantile Plots

® (Q-Q plot can also be used to check homogeneity
e It can be used to check whether a single distribution can represent

two sample sets
e Given two random variables

Xand Xq, X,, ..., X,

Zand z,,z, ..., z,

e Plotting the ordered values of X and Z against each other reveals
approximately a straight line if X and Z are well represented by the

same distribution

> N

L
iiiiii

> X



Parameter Estimation



Parameter Estimation

* Parameter Estimation: Next step after selecting a family of
distributions

* If observations in a sample of size n are X, X,, ..., X (discrete or
continuous), the sample mean and sample variance are:

f H

(2 Yz ]—H?E
‘?=E—"=1X*' §P ==

7l n—1

o If the data are discrete and have been grouped in a frequency
distribution:

T Ejl /i 62 _ (Ejl f.r]fj )‘f X’
1 n-1

* where f is the observed frequency of value X,



Parameter Estimation

e When raw data are unavailable (data are grouped into
class intervals), the approximate sample mean and
variance are:

. chzl fjmj S2— £j21 me J?)_niz

X =
n n-1

- fjis the observed frequency in the j-th class interval
- m;is the midpoint of the j-th interval
¢ is the number of classintervals

® A parameter is an unknown constant, but an estimator is
a statistic.



Parameter Estimation: Example

e Vehicle Arrival Example (continued): Table in the histogram of the
example on Slide 10 can be analyzed to obtain:

n=100, f,=12,X,=0, f,=10,X,=1..  and >' X, =364, and >  fX?2=2080
e The sample mean and variance are a
— 364 ]
X= 10—0—3.64 .
g2 2080-100-(3.64)’ /
99 _ / N

Number of Arrivals per Period

e The histogram suggests X to have a Poisson distribution
e However, note that sample mean is not equal to sample variance.

o Theoretically: Poisson with parameter A ® ;= o2 =/
e Reason: each estimator is a random variable, it is not perfect.



Parameter Estimation

® Maximum-Likelihood Estimators (MLE)
e Discrete distribution with one parameter 6 ®p,(x)
e Given iid sample X, X,, ..., X,
e Likelihood function L(0) is defined as

L(0) = po(X1) Po(Xy) ... Po(Xp)

e MLE of the unknown 6 is 6’ given by 6 that maximizes
L(0) ®»1L(0°)>1L(0) for all values of 6



Parameter Estimation

e Maximum-Likelihood Estimators (MLE)
® Suggested estimators for distributions often used in

simulation

Distribution | Parameter | Estimator
Z =X

Exponential A P

1
X
B, O g=L
X

hot X 6=

5 _
Lognhormal u, o 1= X 0% = G2
T~ After taking In
of data.




Parameter Estimation

e Maximum Likelihood example exponential distribution



Goodness-of-Fit Tests



Goodness-of-Fit Tests

e Conduct hypothesis testing on input data distribution
using
e Kolmogorov-Smirnov test
e Chi-square test

® No single correct distribution in a real application exists
o If very little data are available, it is unlikely to reject any
candidate distributions

o If a lot of data are available, it is likely to reject all candidate
distributions



Goodness-of-Fit Tests

® Be aware of mistakes in decision finding
e Type I Error: a

e Error of first kind, False positive
e Reject Hywhen it is true

e Type II Error: B

e Error of second kind, False negative
e Retain Hywhen it is not true

Statistical State of the null hypothesis
Decision H, True H, False
Type Il Error
Accept Hy Correct Incorrectly accept H,
False negative
Type | Error
Reject H, Incorrectly reject Hy Correct

False positive




Chi-Square Test

e Intuition: comparing the histogram of the data to the shape of
the candidate density or mass function

e Valid for large sample sizes when parameters are estimated by
maximum-likelihood

® Arrange the nobservations into a set of k class intervals
® The test statistic is:

Expected Frequency

Observed frequency in Ei=nxp,
the i-th class where p;is the theoretical
prob. of the i-th interval.
Suggested Minimum =5

° X5 approximately follows the Chi-square distribution with
k-s-ldegrees of freedom

« s = number of parameters of the hypothesized distribution
estimated by the sample statistics.



Chi-Square Test

® The hypothesis of a Chi-square test is

o Hy: The random variable, X, conforms to the distributional
assumption with the parameter(s) given by the estimate(s).
o Hj: The random variable X does not conform.
HA< 72 AcceptH
Test result %;0 A ak-s1 PtH,

g§> Xisa RejectH,

e [f the distribution tested is discrete and combining adjacent
cells is not required (so that E;> minimum requirement):

e Each value of the random variable should be a class interval, unless
combining is necessary, and

pi = p) =P(X=x)



Chi-Square Test

e If the distribution tested is continuous:

p, = [ (0 dx=F(a)-F(a.)

e where a;; and a;are the endpoints of the i-th classinterval
« f(x) is the assumed PDF, F(x) is the assumed CDF
e Recommended number of class intervals (k):

20 Do not use the chi-square test
50 5to 10
100 10to 20

> 100 \/ﬁto_
5

e Caution: Different grouping of data (i.e., k) can affect the hypothesis
testing result.



Chi-Square Test: Example

e V\ehicle Arrival Example (continued):
H,- the random variable is Poisson distributed.
H,: the random variable is not Poisson distributed.

Xi Observed Frequency, O, Expected Frequency, E; (O; - E)?/E;

0 2, 2.6 & Ei=n-p(x)

1 10 o6 | 122 '

2 19 17.4 0.15 -n-

3 17 21.1 0.8 e %

4 19 19.2 4.41 =

5 6 14.0 2.57 :

6 7 8.5 0.26 Combined because

7 5 4.4 of the assumption of

8 S 2.0 min E;=5, e.g.,

9 3 17 0.8 7.6

10 3 0.3 E,=2.6 <5, hence
>11 1 0.1 combine with E,

100 100.0 27.68

e Degree of freedom is k-s-1 = 7-1-1 =5, hence, the hypothesis is
rejected at the «=0.05 level of significance.

2 __
;(0 =27.68 > )(305,5 ~111



Kolmogorov-Smirnov Test

e Intuition: formalize the idea behind examining a Q-Q plot
Recall

e The test compares the continuous CDF, F(x), of the hypothesized
distribution with the empirical CDF, SN(x), of the N sample
observations.

e Based on the maximum difference statistic:
D = max| F(x) - SN(X) |

e A more powerful test, particularly useful when:
e Sample sizes are small
e No parameters have been estimated from the data
e \When parameter estimates have been made:
e Critical values are biased, too large.
e More conservative, i.e., smaller Type I error than specified.



p-Values and “"Best Fits”

Hypothesis testing requires a significance level
e Significance level (a) is the probability of falsely rejecting H,
e Common significance levels
« a=0.1
« a=0.05
« 0=0.01
Be aware that significance level does not tell anything about the
subject of the test!

Generalization of the significance level: p-value

Reject HO Fail to reject HO Reject HO




p-Values and “"Best Fits”

* p-value for the test statistics

e The significance level at which one would just reject H,for the given
test statistic value.

e A measure of fit, the larger the better
e Large p-value: good fit
e Small p-value: poor fit

e V\ehicle Arrival Example (cont.):
* Hy,: data is Poisson
e Test statistics: ¢ =27.68, with 5 degrees of freedom

e The p-value F(5, 27.68) = 0.00004, meaning we would reject H, with
0.00004 significance level, hence Poisson is a poor fit.



p-Values and "Best Fits”

® Many software use p-value as the ranking measure to
automatically determine the “best fit”.

® Things to be cautious about:

e Software may not know about the physical basis of the data,
distribution families it suggests may be inappropriate.

e Close conformance to the data does not always lead to the most
appropriate input model.

 p-value does not say much about where the lack of fit occurs

e Recommended: always inspect the automatic selection using
graphical methods.



Fitting a Non-stationary Poisson Process



Fitting a Non-stationary Poisson Process

e Fitting a NSPP to arrival data is difficult, possible
approaches:

e Fit a very flexible model with lots of parameters

e Approximate constant arrival rate over some basic interval of
time, but vary it from time interval to time interval.

® Suppose we need to model arrivals over time [0, T], our
approach is the most appropriate when we can:
e Observe the time period repeatedly
e Count arrivals / record arrival times

e Divide the time period into k equal intervals of length &t =T/k

e Over n periods of observation let C;be the number of arrivals
during the i-th interval on the j-th period



Fitting a Non-stationary Poisson Process

* The estimated arrival rate during the i-th time period
(i-1) Ar<t<iAris: |
Aty=—N¢,
nAt o -

+ n = Number of observation periods
+ At = Time interval length

« ¢ = Number of arrivals during the i-th time interval on the j-th
observation period

e Example: Divide a 10-hour business day [8am,6pm] into equal
intervals & =20 whose length Ar =, and observe over »=3 days

Number of Arrivals Estimated Arrival
Time Period| Day1 Day 2 Day 3 | Rate (arrivals/hr) JFD[ Instance,
W
8:00 - 8:30 12 14 10 24 - R
=54 amivals/hour

8:30 - 9:00 23 26 32 54 =T \_

0:00 - 930 27 18 A2 62

9:30 - 10:00 20 13 12 30




Selecting Models without Data



Selecting Models without Data

e [f data is not available, some possible sources to obtain
information about the process are:

e Engineering data: often product or process has performance
ratings provided by the manufacturer or company rules
specify time or production standards.

e Expert option: people who are experienced with the process
or similar processes, often, they can provide optimistic,

pessimistic and most-likely times, and they may know the
variability as well.

e Physical or conventional limitations: physical limits on
performance, limits or bounds that narrow the range of the
input process.

e The nature of the process.

® The uniform, triangular, and beta distributions are often
used as input models.
e Speed of a vehicle?



Selecting Models without Data

e Example: Production planning
simulation.

e Input of sales volume of various
products is required, salesperson
of product XYZ says that:

e No fewer than 1000 units and no
more than 5000 units will be sold.

e Given her experience, she believes
there is @ 90% chance of selling
more than 2000 units, a 25%
chance of selling more than 2500
units, and only a 1% chance of
selling more than 4500 units.

e Translating these information into
a cumulative probability of being
less than or equal to those goals
for simulation input:

1,20 ~

1,00 -

0,80 A

0,60 -

0,40

0,20 A

0,00

Cumulative
i Interval (Sales) PDF Frequency, ci
1 1000 < X <2000 0.1 0.10
2 2000 < X <2500 0.65 0.75
3 2500 < X <4500 0.24 0.99
4 4500 < X <5000 0.01 1.00

*

1000 <= X <=2000 2000 < X <=2500

2500 < X <=4500 4500 < X <=5000



Multivariate and Time-Series Input Models



Multivariate and Time-Series Input Models

® The random variable discussed until now were considered to be

independent of any other variables within the context of the
problem

e However, variables may be related

o If they appear as input, the relationship should be investigated and
taken into consideration

e Multivariate input models
e Fixed, finite number of random variables X, X, ..., X,

e For example, lead time and annual demand for an inventory model

e An increase in demand results in lead time increase, hence variables
are dependent.

® Time-series input models
e Infinite sequence of random variables, e.g., X;, X,, Xs, ...

e For example, time between arrivals of orders to buy and sell stocks

e Buy and sell orders tend to arrive in bursts, hence, times between
arrivals are dependent.



Covariance and Correlation

Consider a model that describes relationship between x, and x,:

(Xl - s”l) - ﬂ(Xz - *“'2) + £ ci=arandomvanable :

+ =0, X, and X, are statistically independent

with mean 0 and is
| independent of .x;

* >0, X, and X, tend to be above or below their means together
* B <0 X, and X, tend to be on opposite sides of their means

Covariance between x, and x;:
cov( X, X5) =E[(X, — )X, —1,) | = E(X . X,) — w14,

Covariance between X; and X;:

* where

cov(.X,..X,)!

=0
<0 = ,‘3

> ()

<0

> ()

- <cov(y,,X,) <>



Covariance and Correlation

* Correlation between x, and x, (values between -1 and 1):

cov(.X,. X
p=comr(X,.X,)= X 4,)
0,0,
* where comr(X. X;))1<0 = fl<0
>0 >0

*» The closer pis to -1 or 1, the stronger the linear relationship is
between X; and X..



Time-Series

® A time series is a sequence of random variables X;, X,, X, ...

which are identically distributed (same mean and
variance) but dependent.

 cov(X;, Xi+p,) IS the lag-h autocovariance
« corr(X,, Xy,) is the lag-h autocorrelation

o If the autocovariance value depends only on hand not on t,
the time series is covariance stationary

e For covariance stationary time series, the shorthand for lag-h
is used

Lh= COI’F(Xt, Xt+h)

® Notice

e autocorrelation measures the dependence between random
variables that are separated by h-1 others in the time series



Multivariate Input Models

e If X,and X,are normally distributed, dependence between them

can be modeled by the bivariate normal distribution with s, 1,
o2, o3 and correlation p

e To estimate w4, 1, 012, 052, see “"Parameter Estimation”

e To estimate p, suppose we have nindependent and identically
distributed pairs (X1, X31), (Xi2, X22), «.o (Xany X2n),

e Then the sample covariance is

1 n
C@V( X11x ) - . ' v ,
i n—ljz_ll(xlJ — X)(X5;=X,)
e The sample correlation is
. oVv(X,, X,)
IO:

010> :| Sample deviation J




Multivariate Input Models: Example

® | et X;the average lead time to deliver and X,the annual
demand for a product.

e Data for 10 years is available. Leag(T)ime De&a)nd
. 6,5 103
X,=6.14, ,=1.02 43 83
X,=101.8, &,=9.93 > Ho

6,0 97

A 6,9 112
COV ggmpre =8-66 + Covariance 6.9 104
866 5,8 106

D= —(0.86 73 109
P=1.02x9.93 el s
6,3 96

® | ead time and demand are strongly dependent.

e Before accepting this model, lead time and demand should be
checked individually to see whether they are represented well by
normal distribution.



Time-Series Input Models

o If X, X,, X5,... is @ sequence of identically distributed, but
dependent and covariance-stationary random variables, then
we can represent the process as follows:

e Autoregressive order-1 model, AR(1)
e Exponential autoregressive order-1 model, EAR(1)

® Both have the characteristics that:

o,=corr(X, X,,,)=p h, forh=1.2,...

e Lag-h autocorrelation decreases geometrically as the lag

increases, hence, observations far apart in time are nearly
independent



Time-Series Input Models:
Autoregressive order-1 model AR(1)

® Consider the time-series model:

Xi=u+d( X, —w+g, fort=23,..

where g,, &,, ...arei.i.d. normally distributed with x_ = 0and variance o>

&

e If initial value X;is chosen appropriately, then

« X4, X, ... @are normally distributed with
mean = u, and variance = ¢%/(1-¢°)

e Autocorrelation p, = ¢

® To estimate ¢, i, .2

,[lz)?, 5 = Az(l ¢) ¢A_COV(Xt’Xt+1)

o*

where co'V(X,, X,,,) is the lag-lautocovariance



Time-Series Input Models:
Exponential AR(1) model EAR(1)

¢ Consider the time-series model:
) [gsiﬁf iy with probability ¢

forr=23....

" |@Y., +e,. withprobability 1-¢

where &,. &;....are1.1.d. exponentially distributed with ¢, =1/4. and0<g <1

e If X, is chosen appropriately, then
* X, X,, ... are exponentially distributed with mean =1/4
* Autocorrelation p, =¢", and only positive correlation is allowed.

¢ To estimate ¢. A :

1 - . cov(X X )
] = — . Gj — p — jg r+1
X o

where cov(X,.X,,,)is the /ag-1 autocovariance



Summary

e In this chapter, we described the 4 steps in developing input
data models:
(1) Collecting the raw data
(2) Identifying the underlying statistical distribution
(3) Estimating the parameters
(4) Testing for goodness of fit



