Input modeling

Contents

- Data Collection
- Identifying the Distribution with Data
- Parameter Estimation
- Goodness-of-Fit Tests
- Fitting a Nonstationary Poisson Process
- Selecting Input Models without Data
- Multivariate and Time-Series Input Data

Purpose & Overview

- Input models provide the driving force for a simulation model.
- The quality of the output is no better than the quality of inputs.
- In this chapter, we will discuss the 4 steps of input model development:
 - (1) Collect data from the real system
 - (2) Identify a probability distribution to represent the input process
 - (3) Choose parameters for the distribution
 - (4) Evaluate the chosen distribution and parameters for goodness of fit

Data Collection

Data Collection

- One of the biggest tasks in solving a real problem
 - GIGO: Garbage-In-Garbage-Out

- Even when model structure is valid simulation results can be misleading, if the input data is
 - inaccurately collected
 - inappropriately analyzed
 - not representative of the environment

Data Collection

- Suggestions that may enhance and facilitate data collection:
 - Plan ahead: begin by a practice or pre-observing session, watch for unusual circumstances
 - Analyze the data as it is being collected: check adequacy
 - Combine homogeneous data sets: successive time periods, during the same time period on successive days
 - Be aware of data censoring: the quantity is not observed in its entirety, danger of leaving out long process times
 - Check for relationship between variables (scatter diagram)
 - Check for autocorrelation
 - Collect input data, not performance data

Identifying the Distribution

Histograms

Histograms

- A frequency distribution or histogram is useful in determining the shape of a distribution
- The number of class intervals depends on:
 - The number of observations
 - The dispersion of the data
 - Suggested number of intervals: the square root of the sample size
- For continuous data:
 - Corresponds to the probability density function (pdf) of a theoretical distribution
- For discrete data:
 - Corresponds to the probability mass function (pmf)
- If few data points are available
 - combine adjacent cells to eliminate the ragged appearance of the histogram

Histograms

 Same data with different interval sizes

- Vehicle Arrival Example: Number of vehicles arriving at an intersection between 7 am and 7:05 am was monitored for 100 random workdays.
- There are ample data, so the histogram may have a cell for each possible value in the data range

Arrivals per Period	Frequency
0	12
1	10
2	19
2 3 4	17
4	10
5	8
5 6	7
7	5
8	5
9	7 5 5 3 3
10	3
11	1

• Life tests were performed on electronic components at 1.5 times the nominal voltage, and their lifetime was recorded

Component Life	Frequency
$0 \le x < 3$	23
$3 \le x < 6$	10
$6 \le x < 9$	5
$9 \le x < 12$	1
$12 \le x < 15$	1
$42 \le x < 45$	1

$144 \le x < 147$	1

- Sample size 10000
- Histograms with different numbers of bins

Stanford University Mobile Activity Traces (SUMATRA)

- Target community: cellular network research community
- Traces contain mobility as well as connection information
- Available traces
 - SULAWESI (S.U. Local Area Wireless Environment Signaling Information)
 - BALI (<u>Bay Area Location Information</u>)
- BALI Characteristics
 - San Francisco Bay Area
 - Trace length: 24 hour
 - Number of cells: 90
 - Persons per cell: 1100
 - Persons at all: 99.000
 - Active persons: 66.550
 - Move events: 243.951
 - Call events: 1.570.807

- Question: How to transform the BALI information so that it is usable with a network simulator, e.g., ns-2?
 - Node number as well as connection number is too high for ns-2

- Analysis of the BALI Trace
 - Goal: Reduce the amount of data by identifying user groups
- User group
 - Between 2 local minima
 - Communication characteristic is kept in the group
 - A user represents a group
- Groups with different mobility characteristics
 - Intra- and inter group communication
- Interesting characteristic
 - Number of people with odd number movements is negligible!

Identifying the Distribution

Scatter diagrams

Scatter Diagrams

- A scatter diagram is a quality tool that can show the relationship between paired data
 - Random Variable X = Data 1
 - Random Variable Y = Data 2
 - Draw random variable *X* on the *x*-axis and *Y* on the *y*-axis

Scatter Diagrams

- Linear relationship
 - Correlation: Measures how well data line up
 - Slope: Measures the steepness of the data
 - Direction
 - Y intercept

Identifying the Distribution

Selecting the Family of Distributions

Selecting the Family of Distributions

- A family of distributions is selected based on:
 - The context of the input variable
 - Shape of the histogram
- Frequently encountered distributions:
 - Easier to analyze: Exponential, Normal, and Poisson

• Difficult to analyze: Beta, Gamma, and Weibull

Selecting the Family of Distributions

- Use the physical basis of the distribution as a guide, e.g.:
 - Binomial: Number of successes in n trials
 - Negative binomial and geometric: Number of trials to achieve k successes
 - **Poisson**: Number of independent events that occur in a fix amount of time or space
 - **Normal**: Distribution of a process that is the sum of a number of component processes
 - **Lognormal**: Distribution of a process that is the product of a number of component processes
 - **Exponential**: Time between independent events, or a process time that is memoryless
 - Weibull: Time to failure for components
 - Discrete or continuous uniform: Models complete uncertainty
 - **Triangular**: A process for which only the minimum, most likely, and maximum values are known
 - Empirical: Resamples from the actual data collected

Selecting the Family of Distributions

- Remember the physical characteristics of the process
 - Is the process naturally discrete or continuous valued?
 - Is it bound?
 - Value range?
 - Only positive values
 - Only negative values
 - Interval of [-a:b]
- No "true" distribution for any stochastic input process
- Goal: obtain a good approximation

Identifying the Distribution

Quantile-Quantile Plots

Quantile-Quantile Plots

- Q-Q plot is a useful tool for evaluating distribution fit
- If X is a random variable with CDF F, then the q-quantile of X is the γ such that F(x)

$$F(\gamma) = P(X \le \gamma) = q \text{, for } 0 < q < 1$$

- When F has an inverse, $\gamma = F^{-1}(q)$
- Let $\{x_i, i = 1, 2, ..., n\}$ be a sample of data from X and $\{y_i, j = 1, 2, ..., n\}$ be this sample in ascending order:

$$y_j$$
 is approximately F^{-1} n

where j is the ranking or order number

Quantile-Quantile Plots

- The plot of y_j versus $F^{-1}((j-0.5)/n)$ is
 - Approximately a straight line if F is a member of an appropriate family of distributions
 - The line has slope 1 if F is a member of an appropriate family of distributions with appropriate parameter values

Quantile-Quantile Plots: Example

- Example: Door installation times of a robot follows a normal distribution.
 - The observations are ordered from the smallest to the largest
 - y_j are plotted versus $F^{-1}((j-0.5)/n)$ where F has a normal distribution with the sample mean (99.99 sec) and sample variance (0.2832 2 sec 2)

j	Value
1	99,55
2	99,56
3	99,62
4	99,65
5	99,79
6	99,98
7	100,02
8	100,06
9	100,17
10	100,23
11	100,26
12	100,27
13	100,33
14	100,41
15	100,47

Quantile-Quantile Plots: Example

 Example (continued): Check whether the door installation times follow a normal distribution.

Quantile-Quantile Plots

- Consider the following while evaluating the linearity of a Q-Q plot:
 - The observed values never fall exactly on a straight line
 - The ordered values are ranked and hence not independent, unlikely for the points to be scattered about the line
 - Variance of the extremes is higher than the middle. Linearity of the points in the middle of the plot is more important.

Quantile-Quantile Plots

- Q-Q plot can also be used to check homogeneity
 - It can be used to check whether a single distribution can represent two sample sets
 - Given two random variables
 - X and $x_1, x_2, ..., x_n$
 - Z and $z_1, z_2, ..., z_n$
 - Plotting the **ordered** values of X and Z against each other reveals approximately a straight line if X and Z are well represented by the same distribution

- Parameter Estimation: Next step after selecting a family of distributions
- If observations in a sample of size n are $X_1, X_2, ..., X_n$ (discrete or continuous), the sample mean and sample variance are:

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} \qquad S^2 = \frac{\left(\sum_{i=1}^{n} X_i^2\right) - n\overline{X}^2}{n-1}$$

 If the data are discrete and have been grouped in a frequency distribution:

$$\overline{X} = \frac{\sum_{j=1}^{n} f_j X_j}{n} \qquad S^2 = \frac{\left(\sum_{j=1}^{n} f_j X_j^2\right) - n\overline{X}^2}{n-1}$$

ullet where f_j is the observed frequency of value X_j

 When raw data are unavailable (data are grouped into class intervals), the approximate sample mean and variance are:

- f_i is the observed frequency in the j-th class interval
- m_j is the midpoint of the j-th interval
- c is the number of class intervals
- A parameter is an unknown constant, but an estimator is a statistic.

Parameter Estimation: Example

 Vehicle Arrival Example (continued): Table in the histogram of the example on Slide 10 can be analyzed to obtain:

$$n = 100, f_1 = 12, X_1 = 0, f_2 = 10, X_2 = 1,...$$
 and $\sum_{j=1}^{k} f_j X_j = 364$, and $\sum_{j=1}^{k} f_j X_j^2 = 2080$

The sample mean and variance are

$$\overline{X} = \frac{364}{100} = 3.64$$

$$S^2 = \frac{2080 - 100 \cdot (3.64)^2}{99}$$

$$= 7.63$$

- The histogram suggests X to have a Poisson distribution
 - However, note that sample mean is not equal to sample variance.
 - Theoretically: Poisson with parameter $\lambda \Rightarrow \mu = \sigma^2 = \lambda$
 - Reason: each estimator is a random variable, it is not perfect.

- Maximum-Likelihood Estimators (MLE)
 - Discrete distribution with one parameter $\theta \Rightarrow p_{\theta}(x)$
 - Given iid sample $X_1, X_2, ..., X_n$
 - Likelihood function $L(\theta)$ is defined as

$$L(\theta) = p_{\theta}(X_1) p_{\theta}(X_2) \dots p_{\theta}(X_n)$$

• MLE of the unknown θ is θ ' given by θ that maximizes $L(\theta) \Rightarrow L(\theta') \ge L(\theta)$ for all values of θ

- Maximum-Likelihood Estimators (MLE)
- Suggested estimators for distributions often used in simulation

Distribution	Parameter	Estimator
Poisson	α	$\hat{lpha} = \overline{X}$
Exponential	λ	$\hat{\mathcal{\lambda}} = \frac{1}{\overline{X}}$
Gamma	β, θ	$\hat{ heta} = rac{1}{\overline{X}}$
Normal	μ , σ^2	$\hat{\mu} = X, \hat{\sigma}^2 = S^2$
Lognormal	μ , σ ²	$\hat{\mu} = X, \hat{\sigma}^2 = S^2$

After taking *ln* of data.

• Maximum Likelihood example exponential distribution

Goodness-of-Fit Tests

Goodness-of-Fit Tests

- Conduct hypothesis testing on input data distribution using
 - Kolmogorov-Smirnov test
 - Chi-square test
- No single correct distribution in a real application exists
 - If very little data are available, it is unlikely to reject any candidate distributions
 - If a lot of data are available, it is likely to reject all candidate distributions

Goodness-of-Fit Tests

- Be aware of mistakes in decision finding
 - Type I Error: α
 - Error of first kind, False positive
 - Reject H₀ when it is true
 - Type II Error: β
 - Error of second kind, False negative
 - Retain H₀ when it is not true

Statistical	State of the null hypothesis			
Decision	H_0 True	H_0 False		
Accept H_0	Correct	Type II Error Incorrectly accept H ₀ False negative		
Reject H_0	Type I Error Incorrectly reject H ₀ False positive	Correct		

Chi-Square Test

- Intuition: comparing the histogram of the data to the shape of the candidate density or mass function
- Valid for large sample sizes when parameters are estimated by maximum-likelihood
- Arrange the n observations into a set of k class intervals
- The test statistic is:

- χ_0^2 approximately follows the Chi-square distribution with k-s-1degrees of freedom
- s = number of parameters of the hypothesized distribution estimated by the sample statistics.

Chi-Square Test

- The hypothesis of a Chi-square test is
 - H_0 : The random variable, X, conforms to the distributional assumption with the parameter(s) given by the estimate(s).
 - H_1 : The random variable X does not conform.

Test result
$$\chi_0^2 \le \chi_{\alpha,k-s-1}^2$$
 Accept H_0
 $\chi_0^2 > \chi_{\alpha,k-s-1}^2$ Reject H_0

- If the distribution tested is discrete and combining adjacent cells is not required (so that E_i > minimum requirement):
 - Each value of the random variable should be a class interval, unless combining is necessary, and

$$p_i = p(x_i) = P(X = x_i)$$

Chi-Square Test

• If the distribution tested is continuous:

$$p_i = \int_{a_{i-1}}^{a_i} f(x) dx = F(a_i) - F(a_{i-1})$$

- where a_{i-1} and a_i are the endpoints of the i-th class interval
- f(x) is the assumed PDF, F(x) is the assumed CDF
- Recommended number of class intervals (k):

Sample size (n)	Number of class intervals (k)
20	Do not use the chi-square test
50	5 to 10
100	10 to 20
> 100	\sqrt{n} to $\frac{n}{5}$

• Caution: Different grouping of data (i.e., k) can affect the hypothesis testing result.

Chi-Square Test: Example

Vehicle Arrival Example (continued):

 H_0 : the random variable is Poisson distributed.

 H_1 : the random variable is not Poisson distributed.

\mathbf{x}_{i}	Observed Frequency, O _i	Expected Frequency, E _i (O _i - E _i	$(E - n \cdot n)^2$
0	12] 22	2.6	$E_i = n \cdot p(x)$
1	$\left\{\begin{array}{c} 12 \\ 10 \end{array}\right\} 22$	9.6 } 12.2 7.8	
2	19	17.4	
3	17	21.1 \ 0.8	$= n e^{-\alpha}$
4	19	19.2 \ 4.4	1
5	6	14.0 \ 2.5	7 Combined because
6	7	8.5 0.20	
7	5 5	4.4	of the assumption of
8		2.0	$\min E_i = 5, e.g.,$
9	3 > 17	0.8	52
10	3	0.3	$E_1 = 2.6 < 5$, hence
> 11	1 2	0.1 ک	$\mathbf{Combine\ with\ } E_2$
	100	100.0 27.6	8

• Degree of freedom is k-s-1 = 7-1-1 = 5, hence, the hypothesis is rejected at the α =0.05 level of significance.

$$\chi_0^2 = 27.68 > \chi_{0.05,5}^2 = 11.1$$

Kolmogorov-Smirnov Test

- Intuition: formalize the idea behind examining a Q-Q plot
- Recall
 - The test compares the continuous CDF, F(x), of the hypothesized distribution with the empirical CDF, SN(x), of the N sample observations.
 - Based on the maximum difference statistic:

$$D = \max / F(x) - SN(x) /$$

- A more powerful test, particularly useful when:
 - Sample sizes are small
 - No parameters have been estimated from the data
- When parameter estimates have been made:
 - Critical values are biased, too large.
 - More conservative, i.e., smaller Type I error than specified.

p-Values and "Best Fits"

- Hypothesis testing requires a significance level
 - Significance level (α) is the probability of falsely rejecting H_0
 - Common significance levels
 - $\alpha = 0.1$
 - $\alpha = 0.05$
 - $\alpha = 0.01$
- Be aware that significance level does not tell anything about the subject of the test!
- Generalization of the significance level: *p*-value

p-Values and "Best Fits"

- *p-value* for the test statistics
 - The significance level at which one would just reject H_0 for the given test statistic value.
 - A measure of fit, the larger the better
 - Large *p*-value: good fit
 - Small *p*-value: poor fit
- Vehicle Arrival Example (cont.):
 - H_0 : data is Poisson
 - Test statistics: $\chi_0^2 = 27.68$, with 5 degrees of freedom
 - The p-value F(5, 27.68) = 0.00004, meaning we would reject H_0 with 0.00004 significance level, hence Poisson is a poor fit.

p-Values and "Best Fits"

- Many software use *p-value* as the ranking measure to automatically determine the "best fit".
- Things to be cautious about:
 - Software may not know about the physical basis of the data, distribution families it suggests may be inappropriate.
 - Close conformance to the data does not always lead to the most appropriate input model.
 - p-value does not say much about where the lack of fit occurs
- Recommended: always inspect the automatic selection using graphical methods.

Fitting a Non-stationary Poisson Process

Fitting a Non-stationary Poisson Process

- Fitting a NSPP to arrival data is difficult, possible approaches:
 - Fit a very flexible model with lots of parameters
 - Approximate constant arrival rate over some basic interval of time, but vary it from time interval to time interval.
- Suppose we need to model arrivals over time [0, T], our approach is the most appropriate when we can:
 - Observe the time period repeatedly
 - Count arrivals / record arrival times
 - Divide the time period into k equal intervals of length $\otimes t = T/k$
 - Over n periods of observation let C_{ij} be the number of arrivals during the i-th interval on the j-th period

Fitting a Non-stationary Poisson Process

• The estimated arrival rate during the *i*-th time period $(i-1) \Delta t \le t \le i \Delta t$ is:

$$\hat{\lambda}(t) = \frac{1}{n\Delta t} \sum_{j=1}^{n} C_{ij}$$

- n = Number of observation periods
- Δt = Time interval length
- C_{ij} = Number of arrivals during the i-th time interval on the j-th observation period
- Example: Divide a 10-hour business day [8am,6pm] into equal intervals k = 20 whose length $\Delta t = \frac{1}{2}$, and observe over n=3 days

	Num	ber of Arr	Estimated Arrival	
Time Period	Day 1	Day 2	Day 3	Rate (arrivals/hr)
8:00 - 8:30	12	14	10	24
8:30 - 9:00	23	26	32	54
9:00 - 9:30	27	18	32	52
9:30 - 10:00	20	13	12	30

For instance, 1/3(0.5)*(23+26+32) = 54 arrivals/hour

Selecting Models without Data

Selecting Models without Data

- If data is not available, some possible sources to obtain information about the process are:
 - **Engineering data:** often product or process has performance ratings provided by the manufacturer or company rules specify time or production standards.
 - **Expert option:** people who are experienced with the process or similar processes, often, they can provide optimistic, pessimistic and most-likely times, and they may know the variability as well.
 - Physical or conventional limitations: physical limits on performance, limits or bounds that narrow the range of the input process.
 - The nature of the process.
- The uniform, triangular, and beta distributions are often used as input models.
 - Speed of a vehicle?

Selecting Models without Data

- Example: Production planning simulation.
 - Input of sales volume of various products is required, salesperson of product XYZ says that:
 - No fewer than 1000 units and no more than 5000 units will be sold.
 - Given her experience, she believes there is a 90% chance of selling more than 2000 units, a 25% chance of selling more than 2500 units, and only a 1% chance of selling more than 4500 units.
 - Translating these information into a cumulative probability of being less than or equal to those goals for simulation input:

i	Interval (Sales)	PDF	Cumulative Frequency, <i>ci</i>
1	$1000 \le X \le 2000$	0.1	0.10
2	$2000 < X \le 2500$	0.65	0.75
3	$2500 < X \le 4500$	0.24	0.99
4	$4500 < X \le 5000$	0.01	1.00

Multivariate and Time-Series Input Models

Multivariate and Time-Series Input Models

- The random variable discussed until now were considered to be independent of any other variables within the context of the problem
 - However, variables may be related
 - If they appear as input, the relationship should be investigated and taken into consideration
- Multivariate input models
 - Fixed, finite number of random variables $X_1, X_2, ..., X_k$
 - For example, lead time and annual demand for an inventory model
 - An increase in demand results in lead time increase, hence variables are dependent.
- Time-series input models
 - Infinite sequence of random variables, e.g., $X_1, X_2, X_3, ...$
 - For example, time between arrivals of orders to buy and sell stocks
 - Buy and sell orders tend to arrive in bursts, hence, times between arrivals are dependent.

Covariance and Correlation

Consider a model that describes relationship between X₁ and X₂:

$$(X_1 - \mu_1) = \beta(X_2 - \mu_2) + \varepsilon$$

s is a random variable with mean 0 and is independent of X₂

- $\beta = 0$, X_1 and X_2 are statistically independent
- $\beta > 0$, X_1 and X_2 tend to be above or below their means together
- $\beta < 0$, X_1 and X_2 tend to be on opposite sides of their means
- Covariance between X₁ and X₂:

$$cov(X_1, X_2) = E[(X_1 - \mu_1)(X_2 - \mu_2)] = E(X_1X_2) - \mu_1\mu_2$$

Covariance between X₁ and X₂:

Covariance and Correlation

Correlation between X₁ and X₂ (values between -1 and 1):

$$\rho = \operatorname{corr}(X_1, X_2) = \frac{\operatorname{cov}(X_1, X_2)}{\sigma_1 \sigma_2}$$

• where
$$corr(X_1, X_2) \begin{cases} = 0 \\ < 0 \Rightarrow \beta \end{cases} \Rightarrow \beta \begin{cases} = 0 \\ < 0 \\ > 0 \end{cases}$$

• The closer ρ is to -1 or 1, the stronger the linear relationship is between X_1 and X_2 .

Time-Series

- A time series is a sequence of random variables $X_1, X_2, X_3, ...$ which are identically distributed (same mean and variance) but dependent.
 - $cov(X_t, X_{t+h})$ is the lag-h autocovariance
 - $corr(X_t, X_{t+h})$ is the lag-h autocorrelation
 - If the autocovariance value depends only on h and not on t, the time series is **covariance stationary**
 - For covariance stationary time series, the shorthand for lag-h is used

$$\rho_h = corr(X_t, X_{t+h})$$

- Notice
 - ullet autocorrelation measures the dependence between random variables that are separated by $h ext{-}1$ others in the time series

Multivariate Input Models

- If X_1 and X_2 are normally distributed, dependence between them can be modeled by the bivariate normal distribution with μ_1 , μ_2 , σ_1^2 , σ_2^2 and correlation ρ
 - To estimate μ_1 , μ_2 , σ_1^2 , σ_2^2 , see "Parameter Estimation"
 - To estimate ρ , suppose we have n independent and identically distributed pairs (X_{11}, X_{21}) , (X_{12}, X_{22}) , ... (X_{1n}, X_{2n}) ,
 - Then the sample covariance is

$$\hat{cov}(X_1, X_2) = \frac{1}{n-1} \sum_{j=1}^{n} \frac{1}{(X^{1j} - X_1)(X_{2j} - X_2)}$$

The sample correlation is

$$\hat{\rho} = \frac{\hat{\text{co}} \text{ v}(X_1, X_2)}{\hat{\sigma_1} \hat{\sigma_2}}$$
Sample deviation

Multivariate Input Models: Example

• Let X_1 the average lead time to deliver and X_2 the annual demand for a product.

•	Data	for	10	years	is	availa	able.
---	------	-----	----	-------	----	--------	-------

	(Λ_1)	(Λ_2)
	6,5	103
$\overline{X}_1 = 6.14, \overline{\sigma}_1 = 1.02$	4,3	83
$\overline{X}_2 = 101.8, \ \overline{\sigma}_2 = 9.93$	6,9	116
	6,0	97
côv −8664	6,9	112
$\hat{cov}_{sample} = 8.66$ Covariance	6,9	104
8.66	5,8	106
$\hat{\rho} = \frac{1.02 \times 9.93}{1.02 \times 9.93} = 0.86$	7,3	109
1.02×9.93	4,5	92
	6,3	96

Lead Time

/V \

Demand

- Lead time and demand are strongly dependent.
 - Before accepting this model, lead time and demand should be checked individually to see whether they are represented well by normal distribution.

Time-Series Input Models

- If $X_1, X_2, X_3,...$ is a sequence of identically distributed, but dependent and covariance-stationary random variables, then we can represent the process as follows:
 - Autoregressive order-1 model, AR(1)
 - Exponential autoregressive order-1 model, EAR(1)
- Both have the characteristics that:

$$\rho_h = corr(X_t, X_{t+h}) = \rho^h$$
, for $h = 1, 2, ...$

 Lag-h autocorrelation decreases geometrically as the lag increases, hence, observations far apart in time are nearly independent

Time-Series Input Models: Autoregressive order-1 model AR(1)

Consider the time-series model:

$$X_t = \mu + \phi(X_{t-1} - \mu) + \varepsilon_t$$
, for $t = 2,3,...$

where ε_2 , ε_3 , ... are i.i.d. normally distributed with $\mu_{\varepsilon} = 0$ and variance σ_{ε}^2

- If initial value X_1 is chosen appropriately, then
 - $X_1, X_2, ...$ are normally distributed with $mean = \mu$, and $variance = \sigma^2/(1-\phi^2)$
 - Autocorrelation $\rho_h = \phi^h$
- To estimate ϕ , μ , σ_{ϵ}^2 :

$$\hat{\mu} = \overline{X}, \qquad \hat{\sigma}_{\varepsilon}^2 = \hat{\sigma}^2 (1 - \hat{\phi}^2), \qquad \hat{\phi} = \frac{\text{co^2}(X_t, X_{t+1})}{\hat{\sigma}^2}$$

where $co^v(X_t, X_{t+1})$ is the *lag*-1autocovariance

Time-Series Input Models: Exponential AR(1) model EAR(1)

Consider the time-series model:

$$X_{t} = \begin{cases} \phi X_{t-1}, & \text{with probability } \phi \\ \phi X_{t-1} + \varepsilon_{t}, & \text{with probability } 1-\phi \end{cases}$$
 for $t = 2,3,...$

where $\varepsilon_2, \varepsilon_3, \dots$ are i.i.d. exponentially distributed with $\mu_{\varepsilon} = 1/\lambda$, and $0 \le \phi < 1$

- If X_1 is chosen appropriately, then
 - X_1, X_2, \dots are exponentially distributed with $mean = 1/\lambda$
 - Autocorrelation $\rho_h = \phi^h$, and only positive correlation is allowed.
- To estimate φ, λ:

$$\hat{\lambda} = \frac{1}{\overline{X}}, \qquad \hat{\phi} = \hat{\rho} = \frac{\hat{\text{cov}}(X_t, X_{t+1})}{\hat{\sigma}^2}$$

where $\hat{cov}(X_t, X_{t+1})$ is the *lag-1* autocovariance

Summary

- In this chapter, we described the 4 steps in developing input data models:
 - (1) Collecting the raw data
 - (2) Identifying the underlying statistical distribution
 - (3) Estimating the parameters
 - (4) Testing for goodness of fit