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1. Properties of Random Numbers  

A sequence of random numbers R1, R2, …, must have two important 

statistical properties: 

• Uniformity 

• Independence. 

Random Number, Ri, must be independently drawn from a uniform 

distribution with pdf: 
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1. Properties of Random Numbers 

Uniformity: If the interval [0,1] is divided into n 

classes, or subintervals of equal length, the expected 

number of observations in each interval is N/n, where N 

is the total number of observations 

Independence: The probability of observing a value in 

a particular interval is independent of the previous 

value drawn 
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2. Generation of Pseudo-Random Numbers 

(PRN)  

“Pseudo”, because generating numbers using a known 

method removes the potential for true randomness. 

• If the method is known, the set of random numbers can be 
replicated!! 

Goal: To produce a sequence of numbers in [0,1] that 

simulates, or imitates, the ideal properties of random 

numbers (RN) - uniform distribution and independence. 
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2. Generation of Pseudo-Random Numbers 

(PRN)  

Problems that occur in generation of pseudo-random 

numbers (PRN) 

• Generated numbers might not be uniformly distributed 

• Generated numbers might be discrete-valued instead of 
continuous-valued 

• Mean of the generated numbers might be too low or too 
high 

• Variance of the generated numbers might be too low or too 
high 

• There might be dependence (i.e., correlation) 
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2. Generation of Pseudo-Random Numbers 

(PRN)  

Departure from uniformity and independence for a 

particular generation scheme can be tested.  

If such departures are detected, the generation scheme 

should be dropped in favor of an acceptable one. 
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2. Generation of Pseudo-Random Numbers 

(PRN)  

Important considerations in RN routines: 

• The routine should be fast. Individual computations are 
inexpensive, but a simulation may require many millions of 
random numbers 

• Portable to different computers – ideally to different 
programming languages. This ensures the program produces 
same results 

• Have sufficiently long cycle. The cycle length, or period 
represents the length of random number sequence before 
previous numbers begin to repeat in an earlier order. 

• Replicable. Given the starting point, it should be possible to 
generate the same set of random numbers, completely 
independent of the system that is being simulated 

• Closely approximate the ideal statistical properties of 
uniformity and independence. 
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3. Techniques for Generating Random Numbers  

3.1 Linear Congruential Method (LCM). 

• Most widely used technique for generating random numbers 

3.2 Combined Linear Congruential Generators (CLCG). 

• Extension to yield longer period (or cycle) 

3.3 Random-Number Streams. 
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3. Techniques for Generating Random Numbers: Linear 

Congruential Method  

To produce a sequence of integers, X1, X2, … between 0 and m-1 
by following a recursive relationship: 

 

 

 

 

 

X0 is called the seed 

The selection of the values for a, c, m, and X0 drastically affects 
the statistical properties and the cycle length. 

If c 0 then it is called mixed congruential method 

When c=0 it is called multiplicative congruential method 

,...2,1,0    , mod )(1  imcaXX ii

The 

multiplier 

The 

increment 

The 

modulus 



10 

3. Techniques for Generating Random Numbers: Linear 

Congruential Method 

The random integers are being generated in the 

range [0,m-1], and to convert the integers to 

random numbers: 
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3. Techniques for Generating Random Numbers: Linear 

Congruential Method  

EXAMPLE: Use X0 = 27, a = 17, c = 43, and m = 100. 

The Xi and Ri values are: 

 X1 = (17*27+43) mod 100 = 502 mod 100 = 2, R1 = 0.02; 

 X2 = (17*2+43) mod 100 = 77 mod 100 =77,  R2 = 0.77; 

 X3 = (17*77+43) mod 100 = 1352 mod 100 = 52 R3 = 0.52; 

 … 

 

Notice that the numbers generated assume values only from the set 

I = {0,1/m,2/m,….., (m-1)/m} because each Xi is an integer in the 

set {0,1,2,….,m-1} 

Thus each Ri is discrete on I, instead of continuous on interval [0,1] 
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3. Techniques for Generating Random Numbers: Linear 

Congruential Method  

Maximum Density 

• Such that the values assumed by Ri, i = 1,2,…, leave no large 
gaps on [0,1] 

• Problem: Instead of continuous, each Ri is discrete 

• Solution: a very large integer for modulus m (e.g., 231-1, 248) 

Maximum Period 

• To achieve maximum density and avoid cycling. 

• Achieved by: proper choice of a, c, m, and X0. 

Most digital computers use a binary representation of numbers 

• Speed and efficiency are aided by a modulus, m, to be (or close 
to) a power of 2. 
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3. Techniques for Generating Random Numbers: Linear 

Congruential Method 

Maximum Period or Cycle Length:  

For m a power of 2, say m=2b, and c0, the longest possible period is 

P=m=2b, which is achieved when c is relatively prime to m 

(greatest common divisor of c and m is 1) and a=1+4k, where k is 

an integer 

For m a power of 2, say m=2b, and c=0, the longest possible period is 

P=m/4=2b-2, which is achieved if the seed X0 is odd and if the 

multiplier a is given by a=3+8k or a=5+8k for some k=0,1,…. 

For m a prime number and c=0, the longest possible period is P=m-

1, which is achieved whenever the multiplier a has the property 

that the smallest integer k such that ak-1 is divisible by m is 

k=m-1 
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3. Techniques for Generating Random Numbers : Linear 

Congruential Method 

Example: Using the multiplicative congruential method, find the period of the 
generator for a=13, m=26=64 and X0=1,2,3 and 4 

 

 

 

 

 

 

 

 

 

 

m=64, c=0; Maximal period P=m/4 = 16 is achieved by using odd seeds X0=1 and 
X0=3 (a=13 is of the form 5+8k with k=1) 

With X0=1, the generated sequence {1,5,9,13,…,53,57,61} has large gaps  

Not a viable generator !! Density insufficient, period too short 

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Xi 1 13 41 21 17 29 57 37 33 45 9 53 49 61 25 5 1 

Xi 2 26 18 42 34 58 50 10 2 

Xi 3 39 59 63 51 23 43 47 35 7 27 31 19 55 11 15 3 

Xi 4 52 36 20 4 
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3. Techniques for Generating Random Numbers (1): 

Linear Congruential Method  

Example: Speed and efficiency in using the generator on 

a digital computer is also a factor 

Speed and efficiency are aided by using a modulus m 

either a power of 2 (=2b)or close to it 

After the ordinary arithmetic yields a value of aXi+c, 

Xi+1 can be obtained by dropping the leftmost binary 

digits and then using only the b rightmost digits 
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3. Techniques for Generating Random Numbers : Linear 

Congruential Method 

Example: c=0; a=75=16807; m=231-1=2,147,483,647 (prime #) 

Period P=m-1 (well over 2 billion) 

Assume X0=123,457 

 

X1=75(123457)mod(231-1)=2,074,941,799 

R1=X1/2
31=0.9662 

X2=75(2,074,941,799) mod(231-1)=559,872,160 

R2=X2/2
31=0.2607 

X3=75(559,872,160) mod(231-1)=1,645,535,613 

R3=X3/2
31=0.7662 

………. 

Note that the routine divides by m+1 instead of m. Effect is negligible for 
such large values of m. 
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3. Techniques for Generating Random Numbers: Combined 

Linear Congruential Generators.    

With increased computing power, the complexity of 

simulated systems is increasing, requiring longer period 

generator. 

• Examples: 1) highly reliable system simulation 
requiring hundreds of thousands of elementary 
events to observe a single failure event;  

• 2) A computer network with large number of nodes, 
producing many packets 

Approach: Combine two or more multiplicative 

congruential generators in such a way to produce a 

generator with good statistical properties 
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3. Techniques for Generating Random Numbers: 

Combined Linear Congruential Generators 

L’Ecuyer suggests how this can be done: 

• If Wi,1, Wi,2,….,Wi,k are any independent, discrete 
valued random variables (not necessarily identically 
distributed) 

• If one of them, say Wi,1 is uniformly distributed on 
the integers from 0 to m1-2, then 
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3. Techniques for Generating Random Numbers: Combined 

Linear Congruential Generators 

Let Xi,1, Xi,2, …, Xi,k, be the ith output from k different 

multiplicative congruential generators. 

• The jth generator: 

–Has prime modulus mj and multiplier aj  and 
period is mj-1 

–Produced integers Xi,j is approx ~ Uniform 
on integers in [1, mj-1] 

–Wi,j = Xi,j -1 is approx ~ Uniform on integers 
in [0, mj-2] 
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3. Techniques for Generating Random Numbers: Combined 

Linear Congruential Generators 

Suggested form: 

 

 

 

 

 

•The maximum possible period for such a 
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3. Techniques for Generating Random Numbers: 

Combined Linear Congruential Generators 

Example: For 32-bit computers, L’Ecuyer [1988] suggests combining k = 2 
generators with m1 = 2,147,483,563, a1 = 40,014, m2 = 2,147,483,399 and a2 
= 40,692. The algorithm becomes: 

  Step 1: Select seeds 

– X1,0 in the range [1, 2,147,483,562] for the 1st generator 

– X2,0 in the range [1, 2,147,483,398] for the 2nd generator.  
  

Step 2:  For each individual generator, 

  X1,j+1 = 40,014 X1,j mod 2,147,483,563 

  X2,j+1 = 40,692 X1,j mod 2,147,483,399. 

  Step 3:  Xj+1 = (X1,j+1  - X2,j+1 ) mod 2,147,483,562. 

  Step 4: Return 

 

 

 

  Step 5:  Set j = j+1, go back to step 2. 

• Combined generator has period: (m1 – 1)(m2 – 1)/2 ~ 2 x 1018 
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3. Techniques for Generating Random Numbers: Random-

Numbers Streams 

The seed for a linear congruential random-number generator: 

• Is the integer value X0 that initializes the random-number 
sequence. 

• Any value in the sequence can be used to “seed” the generator. 

A random-number stream: 

• Refers to a starting seed taken from the sequence X0, X1, …, 
XP. 

• If the streams are b values apart, then stream i could defined 
by starting seed: 

 

 

• Older generators: b = 105; Newer generators: b = 1037. 
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3. Techniques for Generating Random Numbers: 

Random-Numbers Streams  

A single random-number generator with k streams can 

act like k distinct virtual random-number generators 

To compare two or more alternative systems. 

• Advantageous to dedicate portions of the pseudo-random 
number sequence to the same purpose in each of the 
simulated systems. 
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4. Tests for Random Numbers: Principles 

Desirable properties of random numbers: Uniformity and 

Independence 

Number of tests can be performed to check these properties been 

achieved or not 

Two type of tests: 

• Frequency Test: Uses the Kolmogorov-Smirnov or the Chi-
square test to compare the distribution of the set of numbers 
generated to a uniform distribution 

• Autocorrelation test: Tests the correlation between numbers 
and compares the sample correlation to the expected 
correlation. 
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4. Tests for Random Numbers: Principles 

Two categories: 

• Testing for uniformity. The hypotheses are: 

   H0:   Ri ~ U[0,1] 

   H1:   Ri ~ U[0,1] 

– Failure to reject the null hypothesis, H0, means 
that evidence of non-uniformity has not been 
detected. 

• Testing for independence. The hypotheses are: 

   H0:   Ri ~ independently distributed 

   H1:   Ri ~ independently distributed 

– Failure to reject the null hypothesis, H0, means 
that evidence of dependence has not been detected. 

/ 

/ 
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4. Tests for Random Numbers: Principles 

For each test, a Level of significance a must be stated. 

The level a , is the probability of rejecting the null hypothesis H0 

when the null hypothesis is true: 

     a = P(reject H0|H0 is true) 

The decision maker sets the value of a for any test 

Frequently a is set to 0.01 or 0.05 
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4. Tests for Random Numbers: Principles 

When to use these tests: 

• If a well-known simulation languages or random-number 
generators is used, it is probably unnecessary to test 

• If the generator is not explicitly known or documented, e.g., 
spreadsheet programs, symbolic/numerical calculators, tests 
should be applied to many sample numbers. 

Types of tests: 

• Theoretical tests: evaluate the choices of m, a, and c without 
actually generating any numbers 

• Empirical tests: applied to actual sequences of numbers 
produced.  Our emphasis. 
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4. Tests for Random Numbers: Frequency Tests 

Test of uniformity 

Two different methods: 

• Kolmogorov-Smirnov test 

• Chi-square test 

Both these tests measure the degree of agreement between the 

distribution of a sample of generated random numbers and the 

theoretical uniform distribution 

Both tests are based on null hypothesis of no significant difference 

between the sample distribution and the theoretical distribution 
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4. Tests for Random Numbers: Frequency Tests 

Kolmogorov-Smirnov Test  

Compares the continuous cdf, F(x), of the uniform distribution with 

the empirical cdf, SN(x), of the N sample observations.   

• We know:    

• If the sample from the RN generator is R1, R2, …, RN, then the 
empirical cdf, SN(x) is:   

     

  

The cdf of an empirical distribution is a step function with jumps at 

each observed value. 

10   ,)(  xxxF

N

xRRR
xS n

N




 are which ,...,, ofnumber 
)( 21



32 

4. Tests for Random Numbers: Frequency Tests 

Kolmogorov-Smirnov Test  

Test is based on the largest absolute deviation statistic between F(x) and 

SN(x) over the range of the random variable:  

 D = max| F(x) - SN(x)| 

The distribution of D is known and tabulated (A.8) as function of N 

Steps: 

1. Rank the data from smallest to largest. Let R(i) denote ith smallest 
observation, so that R(1)R(2)…R(N) 

2. Compute 

 

3. Compute D= max(D+, D-) 

4. Locate in Table A.8 the critical value Da, for the specified 
significance level a and the sample size N 

5. If the sample statistic D is greater than the critical value Da, the 
null hypothesis is rejected. If D Da, conclude there is no difference 
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4. Tests for Random Numbers: Frequency Tests 

Kolmogorov-Smirnov Test 

Example: Suppose 5 generated numbers are 0.44, 0.81, 0.14, 0.05, 

0.93. 

 Step 1: 

Step 2: 

Step 3:  D = max(D+, D-) = 0.26 

Step 4:  For a  = 0.05,  

 Da = 0.565 > D 

 

Hence, H0 is not rejected. 

Arrange R(i) from 

smallest to largest 

D+ = max {i/N – R(i)} 

D- = max {R(i) - (i-1)/N} 

R(i) 0.05 0.14 0.44 0.81 0.93 

i/N 0.20 0.40 0.60 0.80 1.00 

i/N – R(i) 0.15 0.26 0.16 - 0.07 

R(i) – (i-1)/N 0.05 - 0.04 0.21 0.13 
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4. Tests for Random Numbers: Frequency Tests - Chi-

Square Test  

Chi-square test uses the sample statistic: 

 

 

 

 

• Approximately the chi-square distribution with n-1 degrees of 
freedom (where the critical values are tabulated in Table A.6) 

• For the uniform distribution, Ei, the expected number in the 
each class is: 

 

Valid only for large samples, e.g. N >= 50 
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4. Tests for Random Numbers : Frequency Tests - Chi-

Square Test 

Example : Use Chi-square test for the data shown below with 

a=0.05. The test uses n=10 intervals of equal length, namely 

[0,0.1),[0.1,0.2), …., [0.9,1.0) 
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4. Tests for Random Numbers: Frequency Tests Chi-

Square Test  

The value of 0
2=3.4; The critical value from table A.6 is 

0.05,9
2=16.9. Therefore the null hypothesis is not rejected  
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4. Tests for Random Numbers: Tests for Autocorrelation  

The test for autocorrelation are concerned with the dependence 

between numbers in a sequence. 

Consider: 

 

 

 

Though numbers seem to be random, every fifth number is a large 

number in that position. 

This may be a small sample size, but the notion is that numbers in 

the sequence might be related 
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4. Tests for Random Numbers: Tests for Autocorrelation 

Testing the autocorrelation between every m numbers (m is a.k.a. 

the lag), starting with the ith number 

• The autocorrelation rim between numbers:  Ri, Ri+m, Ri+2m, 
Ri+(M+1)m 

• M is the largest integer such that 

Hypothesis: 

 

 

If the values are uncorrelated: 

• For large values of M, the distribution of the estimator of rim, 
denoted        is approximately normal. 
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4. Tests for Random Numbers : Tests for Autocorrelation 

Test statistics is: 

 

 

• Z0 is distributed normally with mean = 0 and variance = 1, and: 

 

 

 

 

 

If rim > 0, the subsequence has positive autocorrelation 

• High random numbers tend to be followed by high ones, and vice 
versa. 

If rim < 0, the subsequence has negative autocorrelation 

• Low random numbers tend to be followed by high ones, and vice 
versa. 
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4. Tests for Random Numbers: Tests for Autocorrelation 

After computing Z0, do not reject the hypothesis of independence if 

–za/2Z0  za/2 

a is the level of significance and za/2 is obtained from table A.3 
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4. Tests for Random Numbers: Tests for Autocorrelation 

Example: Test whether the 3rd, 8th, 13th, and so on, for the output on 
Slide 37 are auto-correlated or not. 

• Hence, a = 0.05, i = 3, m = 5, N = 30, and M = 4. M is the 
largest integer such that 3+(M+1)530. 

 

 

 

 

 

 

 

 

• From Table A.3, z0.025 = 1.96.  Hence, the hypothesis is not 
rejected. 
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4. Tests for Random Numbers: Tests for Autocorrelation 

Shortcoming:  

The test is not very sensitive for small values of M, particularly 

when the numbers being tested are on the low side. 

Problem when “fishing” for autocorrelation by performing numerous 

tests: 

• If a = 0.05, there is a probability of 0.05 of rejecting a true 
hypothesis. 

• If 10 independent sequences are examined, 

– The probability of finding no significant 
autocorrelation, by chance alone, is 0.9510 = 0.60. 

– Hence, the probability of detecting significant 
autocorrelation when it does not exist = 40%  


