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Useful Statistical Models 

• Queueing systems 

• Inventory and supply-chain systems 

• Reliability and maintainability 

• Limited data 

 



 Queueing Systems   

 In a queueing system, inter arrival and service-time 
patterns can be probabilistic  

 Sample statistical models for inter arrival or service 
time distribution: 

• Exponential distribution: if service times are completely 
random 

• Normal distribution: fairly constant but with some 
random variability (either positive or negative) 

• Truncated normal distribution: similar to normal 
distribution but with restricted value. 

• Gamma and Weibull distribution: more general than 
exponential (involving location of the modes of pdf’s and 
the shapes of tails.) 



Inventory and supply chain  
  In realistic inventory and supply-chain systems, there are at least         
three random variables:  

• The number of units demanded per order or per time period 

• The time between demands 

• The lead time (time between the placing of an order for stocking 
the inventory system and the receipt of that order) 

   Sample statistical models for lead time distribution: 

• Gamma 

  Sample statistical models for demand distribution:  

• Poisson: simple and extensively tabulated. 

• Negative binomial distribution: longer tail than Poisson (more 
large demands). 

• Geometric: special case of negative binomial given at least one 
demand has occurred. 

 



Reliability and maintainability 

Time to failure (TTF) 

• Exponential: failures are random 

• Gamma: for standby redundancy where each component 
has an exponential TTF 

• Weibull: failure is due to the most serious of a large 
number of defects in a system of components 

• Normal: failures are due to wear 

 



Other areas 

 For cases with limited data, some useful distributions   

are: 

• Uniform, triangular and beta  

 Other distribution: Bernoulli, binomial and hyper-

exponential. 



Discrete Distributions 

Discrete random variables are used to describe random 

phenomena in which only integer values can occur. 

In this section, we will learn about: 

• Bernoulli trials and Bernoulli distribution 

• Binomial distribution 

• Geometric and negative binomial distribution 

• Poisson distribution 



The Bernoulli distribution is a special case of the binomial 

distribution where there is only a single trial. It is the simplest 

type of probability distribution, representing a single experiment 

that has exactly two possible outcomes: success or failure. 

Key Characteristics of the Bernoulli Distribution: 

Binary Outcomes: 

• The experiment or trial has only two possible outcomes, typically 
labeled as "success" (often represented by 1) and "failure" (often 
represented by 0). 

Single Trial: 

• There is only one trial or experiment, meaning the Bernoulli 
distribution describes the outcome of just one event. 

Probability of Success (p): 

• The probability of success in the trial is denoted by p. 
Consequently, the probability of failure is 1−p. 

 

Bernoulli Trials and Bernoulli Distribution        



Bernoulli Trials and Bernoulli Distribution        

Bernoulli Trials:  

• Consider an experiment consisting of n trials, each can be a 
success or a failure. 

– Let Xj = 1 if the jth trial is a success with probability p 

– and Xj = 0 if the jth trial is a failure 

 

 

 

 

• For one trial, it is called the Bernoulli distribution where E(Xj) = 
p and V(Xj) = p (1-p) = p q 

Bernoulli process:  

• The n Bernoulli trials where trails are independent: 

   p(x1,x2,…, xn) = p1(x1) p2(x2) … pn(xn) 















otherwise               ,0

210   ,1

,...,2,1,1              ,

)()( ,...,n,j,xqp

njxp

xpxp j

j

jjj





Relation to the Binomial Distribution: 

The Bernoulli distribution is a special case of the binomial 

distribution with n=1. In other words, a binomial distribution 

with only one trial is equivalent to a Bernoulli distribution. 

Applications of the Bernoulli Distribution: 

Coin Tosses: Representing the probability of getting heads (success) or 

tails (failure) in a single coin toss. 

Pass/Fail Tests: Determining the probability of passing or failing a single 

test or trial. 

Customer Behavior: Modeling whether a customer makes a purchase 

(success) or does not make a purchase (failure) in a single interaction. 

Used to generate discrete random variate such as binomial and geometric 

The Bernoulli distribution is fundamental in probability and statistics, 

serving as the building block for more complex distributions like the 

binomial distribution. It is used in situations where there is a simple, 

binary outcome in a single trial or experiment. 

 



Binomial Distribution 

• Gives probability of number of successes in n independent trials, 

when probability of success p on single trial is a constant. 

• To determine the probability of a particular outcome with all the 

success. 

• E.g. what is the probability of 8 or more “tails” in 10 tosses of a fair 

coin? 

• Can be sometimes approximated by normal or by Poisson 

distribution. 

   Applications:  used frequently in quality control, reliability, survey     

sampling and other industrial problems. 

• To classify defective or non defective items in a batch of size n. 

• Find out demand (no of items) placed by a customer in case of 

inventory problem. 

 



The binomial distribution is a discrete probability distribution 

that describes the number of successes in a fixed number of 

independent trials of a binary (yes/no or success/failure) 

experiment. Each trial is identical, and the probability of success 

remains constant across all trials. 

Key Characteristics of the Binomial Distribution: 

Binary Outcomes: 

• Each trial in a binomial experiment has only two possible 
outcomes: "success" or "failure." 

Fixed Number of Trials (n): 

• The number of trials, denoted by n, is fixed in advance. 

Constant Probability of Success (p): 

• The probability of success in each trial is the same and is 
denoted by p. Consequently, the probability of failure is 1−p. 

Independent Trials: 

• The trials are independent, meaning the outcome of one trial 
does not affect the outcome of another. 

 



Binomial Distribution   

The number of successes in n Bernoulli trials, X, has a binomial distribution. 

     

 

 

 

 

 

 

• Easy approach is to consider the binomial distribution X as a sum of 
n independent Bernoulli Random variables (X=X1+X2+…+Xn) 

• The mean, E(X) = p + p + … + p = n*p 

• The variance, V(X) = pq + pq + … + pq = n*pq  

The number of 

outcomes having the 

required number of 

successes and 

failures 

Probability that 

there are  

x successes and 

(n-x) failures 
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Example: The probability of a chip failure is 0.05. everyday a 

random sample of size 14 is taken. What is the probability that 

i) At most 3 will fail 

ii) At least 3 will fail. 



Applications of the Binomial Distribution: 

 

Quality Control: For example, determining the probability of 

finding a certain number of defective products in a batch. 

Clinical Trials: Estimating the likelihood of a certain number of 

patients responding to a treatment. 

Sports: Calculating the probability of a player achieving a certain 

number of hits in a given number of attempts. 

 

The binomial distribution is widely used in statistics to model 

scenarios where there are fixed numbers of independent trials, 

each with the same probability of success. 

 



Geometric Distribution 

• Gives probability of requiring exactly x Bernoulli trials before the first 

success is achieved. 

• E.g. determination of probability of requiring exactly five tests firings 

before first success is achieved. 

• A doctor is seeking an anti-depressant for a newly diagnosed patient. 

Suppose that, of the available anti-depressant drugs, the probability 

that any particular drug will be effective for a particular patient is 

p=0.6.  

• What is the probability that the first drug found to be effective for this 

patient is the first drug tried, the second drug tried, and so on? What is 

the expected number of drugs that will be tried to find one that is 

effective? 

• A patient is waiting for a suitable matching kidney donor for a 

transplant. If the probability that a randomly selected donor is a 

suitable match is p=0.1, what is the expected number of donors who will 

be tested before a matching donor is found? 

 

 



The geometric distribution is a discrete probability distribution that 

models the number of trials required to get the first success in a 

sequence of independent and identically distributed Bernoulli trials 

(each with the same probability of success). It is used to determine the 

probability that the first occurrence of success requires a specific 

number of trials. 

Key Characteristics of the Geometric Distribution: 

Binary Outcomes: 

• Each trial in a geometric experiment has two possible outcomes: success 
or failure. 

Independent Trials: 

• The trials are independent, meaning the outcome of one trial does not 
affect the outcome of another. 

Constant Probability of Success (p): 

• The probability of success p is constant across all trials. 

Number of Trials Until First Success: 

• The geometric distribution is concerned with the number of trials, X, 
until the first success occurs. 

 



The negative binomial distribution is a discrete probability distribution 

that models the number of trials required to achieve a specified number 

of successes in a sequence of independent and identically distributed 

Bernoulli trials. It generalizes the geometric distribution, which is a 

special case where the number of successes required is 1. 

 

Key Characteristics of the Negative Binomial Distribution: 

Binary Outcomes: 

• Each trial in the negative binomial experiment has two possible 
outcomes: success or failure. 

Independent Trials: 

• The trials are independent, meaning the outcome of one trial does not 
affect the outcome of another. 

Constant Probability of Success (p): 

• The probability of success p is constant across all trials. 

Number of Successes (r): 

• The distribution is concerned with the number of trials needed to 
achieve a specified number of successes r. 

 



The probability mass function (PMF) of the negative 

binomial distribution is given by: 



Special Case - Geometric Distribution: 

The geometric distribution is a special case of the negative binomial 

distribution when r=1. In this case, the distribution models the 

number of trials needed to achieve the first success. 

 

 





Geometric & Negative Binomial Distribution 

Geometric distribution (Used frequently in data networks) 

• The number of Bernoulli trials, X, to achieve the 1st success: 

     

 

 

• E(x) = 1/p, and V(X) = q/p2 

 

Negative binomial distribution 

• The number of Bernoulli trials, X, until the kth success  

• If Y is a negative binomial distribution with parameters p and k, then: 

     

 

 

 

• E(Y) = k/p, and V(X) = kq/p2 

• Y is the sum of k independent geometric RVs 



 




otherwise           ,0

,...,2,1,0   , 
)()....(

1 nxpq
xpFSFFFP

x

























otherwise                        ,0

,...2,1,   ,  
1

1

)(
kkkypq

k

y

xp
kky







Geometric & Negative Binomial Distribution 

Example: 40% of the assembled ink-jet printers are rejected at the inspection 

station. Find the probability that the first acceptable ink-jet printer is the third 

one inspected. Considering each inspection as a Bernoulli trial with q=0.4 and 

p=0.6, 

   p(3) = 0.42(0.6) = 0.096 

 Thus, in only about 10% of the cases is the first acceptable printer is the 

third one from any arbitrary starting point 

What is the probability that the third printer inspected is the second acceptable 

printer? 

 Use Negative Binomial Distribution with y=3 and k=2 
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• Gives probability of exactly x independent occurrences during a 

given period of time. If events take place independently and at 

constant rate. 

• May also represent number of occurrences over constant areas or 

volumes. 

• E.g. used to represent distribution of number of defects in a piece 

of material, customer arrivals, insurance claims, incoming 

telephone calls etc.. 

• Frequently used as approximation to binomial distribution. 

Poisson Distribution 



Poisson Distribution 

Poisson distribution describes many random processes quite well 
and is mathematically quite simple. The pmf and cdf are: 

 

 

 

 

where a > 0 

• E(X) = a = V(X) 
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Poisson Distribution 

Example: A computer repair person is “beeped” each 
time there is a call for service.  The number of beeps 
per hour ~ Poisson(a = 2 per hour). 

 

• The probability of three beeps in the next hour: 

   p(3)  = e-223/3! = 0.18 

  also, p(3) = F(3) – F(2) = 0.857-0.677=0.18 

 

• The probability of two or more beeps in a 1-hour period: 

   p(2 or more)  = 1 – p(0) – p(1)  

     = 1 – F(1)  

     = 0.594 



The number of accidents in a year to taxi driver in Mumbai follows 

a Poisson distribution with mean equal to 3. out of 100 taxi drivers, 

find approximately the number of drivers with: 

i) No accident in a year 

ii) More than 3 accidents in a year 



Continuous Distributions   

Continuous random variables can be used to describe 

random phenomena in which the variable can take on 

any value in some interval. 

In this section, the distributions studied are: 

• Uniform 

• Exponential 

• Normal 

• Weibull 

• Lognormal 



Uniform Distribution 

A random variable X is uniformly distributed on the interval (a,b), 

U(a,b), if its pdf and cdf are: 
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Uniform Distribution 

Properties 

• P(x1 ≤ X < x2) is proportional to the length of the 
interval  [F(x2) – F(x1) = (x2-x1)/(b-a)] 

• E(X) = (a+b)/2  V(X) = (b-a)2/12 

U(0,1) provides the means to generate random numbers, 

from which random variates can be generated. 

Example: In a warehouse simulation, a call comes to a 

forklift operator about every 4 minutes. With such a 

limited data, it is assumed that time between calls is 

uniformly distributed with a mean of 4 minutes with 

(a=0 and b=8) 



Exponential Distribution 

A random variable X is exponentially distributed with parameter l > 

0 if its pdf and cdf are: 
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• E(X) = 1/l V(X) = 1/l2 

• Used to model interarrival times 
when arrivals are completely 
random, and to model service times 
that are highly variable 

• For several different exponential 
pdf’s (see figure), the value of 

intercept on the vertical axis is l, 
and all pdf’s eventually intersect.  



Exponential Distribution  

Example: A lamp life (in thousands of hours) is 

exponentially distributed with failure rate (l = 1/3), 

hence, on average, 1 failure per 3000 hours. 

• The probability that the lamp lasts longer than its 
“mean life” is: P(X > 3) = 1-(1-e-3/3) = e-1 = 0.368 

• This is independent of l. That is, the probability 
that an exponential random variable is greater 
than it’s mean is 0.368 for any l  

 

• The probability that the lamp lasts between 2000 to 
3000 hours is: 

  P(2  X  3) = F(3) – F(2) = 0.145 



Exponential Distribution 
Memoryless property is one of the important properties of 

exponential distribution 

• For all s  0 and t  0 : 

  P(X > s+t | X > s) = P(X > t)=P(X>s+t)/P(s) = e-lt  

 

• Let X represent the life of a component and is exponentially 
distributed. Then, the above equation states that the 
probability that the component lives for at least s+t hours, 
given that it survived s hours is the same as the probability 
that it lives for at least t hours. That is, the component 
doesn’t remember that it has been already in use for a time s. 
A used component is as good as new!!! 

 

• Light bulb example: The probability that it lasts for 
another 1000 hours given it is operating for 2500 hours is the 
same as the new bulb will have a life greater than 1000 hours 

  P(X > 3.5 | X > 2.5) = P(X > 1) = e-1/3 = 0.717 



Normal Distribution 

A random variable X is normally distributed has the pdf: 

 

 

• Mean:    

• Variance: 

 

• Denoted as X ~ N(m,s2) 

Special properties: 

                                                         . 

 

• f(m-x)=f(m+x); the pdf is symmetric about m. 

• The maximum value of the pdf occurs at x = m; the mean and 
mode are equal. 

0)(lim and ,0)(lim   xfxf xx




















 
 x

x
xf   ,

2

1
exp

2

1
)(

2

s

m

s

 m

02 s



Normal Distribution 

The CDF of Normal distribution is given by 

 

 

 

It is not possible to evaluate this in closed form 

Numerical methods can be used but it would be 

necessary to evaluate the integral for each pair (m, s2). 

A transformation of variable allows the evaluation to be 

independent of m and s. 
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Normal Distribution 

Evaluating the distribution: 

• Independent of m and s, using the standard normal distribution:  

    Z ~ N(0,1) 

• Transformation of variables: let Z = (X - m) / s,             
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is very well tabulated. 



Exponential Distribution 

Example: The time required to load an ocean going vessel, X, is 

distributed as N(12,4) 

• The probability that the vessel is loaded in less than 10 hours: 

 

 

– Using the symmetry property, (1) is the complement of  (-1), 
i.e.,  (-1) = 1- (1)  
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Normal Distribution 

Example: The time to pass through a queue to begin 

self-service at a cafeteria is found to be N(15,9). The 

probability that an arriving customer waits between 14 

and 17 minutes is: 

 

 P(14X17) = F(17)-F(14) 

    = ((17-15)/3) - ((14-15)/3) 

    = (0.667)-(-0.333) = 0.3780 



Normal Distribution 

Transformation of pdf for the 

queue example is shown here 



Weibull Distribution 

A random variable X has a Weibull distribution if its pdf has the form: 

 

 

 

3 parameters: 

• Location parameter: u,   

• Scale parameter: b , b  0 

• Shape parameter. a,   0 

Example: u = 0 and a = 1: 
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When b = 1,  

X ~ exp(l = 1/a) 

Exponential Distribution 



Weibull Distribution 

The mean and variance of Weibull is given by 

 

 

 

 

 

 

The CDF is given by 
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Weibull Distribution 

Example: The time it takes for an aircraft to land and clear the runway at 

a major international airport has a Weilbull distribution with n=1.35 

minutes, b=0.5, a=0.04 minute. Find the probability that an incoming 

aircraft will take more than 1.5 minute to land and clear the runway. 
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Lognormal Distribution 

A random variable X has a lognormal distribution if its pdf has the 
form: 

 

 

 

• Mean E(X) = em+s2/2  

• Variance V(X) = e2m+s2/2 (es2 - 1) 

• Note that parameters m and s2 are not  

 the mean and variance of the lognormal 

 

Relationship with normal distribution 

• When Y ~ N(m, s2), then X = eY ~ lognormal(m, s2) 
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Lognormal Distribution 

Example: The rate of return on a volatile investment is modeled as 

lognormal with mean 20% (=mL) and standard deviation 5% 

(=sL
2). What are the parameters for lognormal? 

• m = 2.9654; s2=0.06 
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Poisson Process 

Definition: N(t), t0 is a counting function that represents the 

number of events occurred in [0,t]. 

• e.g., arrival of jobs, e-mails to a server, boats to a dock, calls 
to a call center 

A counting process {N(t), t0} is a Poisson process with mean 

rate l if: 

• Arrivals occur one at a time 

• {N(t), t0} has stationary increments: The distribution 
of number of arrivals between t and t+s depends only on 
the length of interval s and not on starting point t. Arrivals 
are completely random without rush or slack periods. 

• {N(t), t  0} has independent increments: The number 
of arrivals during non-overlapping time intervals are 
independent random variables. 



Poisson Process 

Properties 

       

 

• Equal mean and variance: E[N(t)] = V[N(t)] = lt 

• Stationary increment: For any s and t, such that s < t, the 
number of arrivals in time s to t is also Poisson-distributed with 
mean l(t-s) 
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Stationary & Independent Memoryless 

Interarrival Times  

Consider the inter-arrival times of a Possion process (A1, A2, …), where Ai is 
the elapsed time between arrival i and arrival i+1 

    

 

 

• The 1st arrival occurs after time t iff there are no arrivals in the interval 
[0,t], hence: 

   P{A1 > t} = P{N(t) = 0} = e-lt 

    P{A1  t} = 1 – e-lt  [cdf of exp(l)] 

• Inter-arrival times, A1, A2, …, are exponentially distributed and 
independent with mean 1/l 

Arrival counts   

~ Poisson(l) 

Inter-arrival time   

~ Exp(1/l) 



Poisson Process 

The jobs at a machine shop arrive according to a Poisson 

process with a mean of l = 2 jobs per hour. Therefore, 

the inter-arrival times are distributed exponentially 

with the expected time between arrivals being E(A)=1/ 

l=0.5 hour 



Other Properties  

Splitting: 

• Suppose each event of a Poisson process can be classified as Type I, 
with probability p and Type II, with probability 1-p. 

• N(t) = N1(t) + N2(t), where N1(t) and N2(t) are both Poisson processes 
with rates l p and l (1-p) 

 

 

 

 

Pooling: 

• Suppose two Poisson processes are pooled together 

• N1(t) + N2(t) = N(t), where N(t) is a Poisson processes with rates l1 + l2 

N(t) ~ Poisson(l) 

N1(t) ~ Poisson[lp] 

N2(t) ~ Poisson[l(1-p)] 

l 
lp 

l(1-p) 

N(t) ~ Poisson(l1  l2) 

N1(t) ~ Poisson[l1] 

N2(t) ~ Poisson[l2] 

l1  l2 

l1 

l2 



Poisson Process 

Example: Suppose jobs arrive at a shop with a Poisson 

process of rate l. Suppose further that each arrival is 

marked “high priority” with probability 1/3 (Type I 

event) and “low priority” with probability 2/3 (Type II 

event). Then N1(t) and N2(t) will be Poisson with rates 

l/3 and 2 l/3. 



Non-stationary Poisson Process (NSPP)   

Poisson Process without the stationary increments, characterized by l(t), the 
arrival rate at time t. (Drop assumption 2 of Poisson process, stationary 
increments) 

The expected number of arrivals by time t, L(t): 

 

 

Relating stationary Poisson process N(t) with rate l1 and NSPP N(t) with 
rate l(t): 

• Let arrival times of a stationary process with rate l = 1 be t1, t2, 
…, and arrival times of a NSPP with rate l(t) be T1, T2, …, we 
know: 

     ti = L(Ti)  [Expected # of arrivals] 

    Ti = L1(ti) 

• An NSPP can be transformed into a stationary Poisson process 
with arrival rate 1 and vice versa.  


t

λ(s)dsΛ(t)
0



Example: Suppose arrivals to a Post Office have rates 2 per minute from 8 am 
until 12 pm, and then 0.5 per minute until 4 pm.   

Let t = 0 correspond to 8 am, NSPP N(t) has rate function:  

 

 

 Expected number of arrivals by time t: 

 

 

 

Hence, the probability distribution of the number of arrivals between 11 am 
and 2 pm, corresponds to times 3 and 6 respectively. 

  P[Nns(6) – Nns(3) = k]  = P[N(L(6)) – N(L(3)) = k] 

     = P[N(9) – N(6) = k] 

     = e-(9-6)(9-6)k/k! = e-3(3)k/k! 
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Non-stationary Poisson Process (NSPP)  



A distribution whose parameters are the observed values in a sample 

of data. 

• May be used when it is impossible or unnecessary to establish that 
a random variable has any particular parametric distribution. 

• Advantage: no assumption beyond the observed values in the 
sample. 

• Disadvantage: sample might not cover the entire range of possible 
values. 

Empirical Distributions  



Empirical Example – Discrete 

Customers at a local restaurant arrive at lunch time in groups of 
eight from one to eight persons. The number of persons per party in 
the last 300 groups has been observed. The results are summarized 
in Table 5.3. A histogram of the data is plotted and a CDF is 
constructed. The CDF is called the empirical distribution 



Empirical Example – Discrete 

Histogram 

CDF 



Empirical Example - Continuous 

The time required to repair a conveyor system that has 

suffered a failure has been collected for the last 100 

instances; the results are shown in Table 5.4. There 

were 21 instances in which the repair took between 0 

and 0.5 hour, and so on. The empirical cdf is shown in 

Figure 5.29. A piecewise linear curve is formed by the 

connection of the points of the form [x,F(x)]. The 

points are connected by a straight line. The first 

connected pair is (0, 0) and (0.5, 0.21); then the points 

(0.5, 0.21) and (1.0, 0.33) are connected; and so on.  



Empirical Example – Continuous 



Empirical Example – Continuous 



• A college professor of electrical engg is leaving home for the 

summer, but would like to have a light burning at all times to 

discourage burglars. The professor rigs up a device that will hold 

two light bulbs. The device will switch the current to the second 

bulb if the first bulb fails. The box in which the light bulbs are 

packaged says, ”Average life 1000 hrs, exponentially 

distributed.” the professor will be gone 90 days (2160 hrs). What 

is the probability that a light will be burning when the summer 

is over and the professor returns? 

 


