Statistical Models In Simulation



Discrete Random Variables

® Y is a discrete random variable if the number of possible values
of X is finite, or countable infinite.

e Example: Consider packets arriving at a router.
e |Let X be the number of packets arriving each second at a router.
R, = possible values of X (range space of X) = {0.1.2, ..}
p(x;) = probability the random variable X is x, , p(x) =P(X =1x,)
» p(x), 1= 1.2.... must satisfy:

1. p(x,)=0, tforalli
9 - —
2. EH plx,)=1

* The collection of pairs (x, p(x)), i=1.2...., is called the probability
distribution of x, and

* p(x,) is called the probability mass function (PMF) of x.



Continuous Random Variables

® X is a continuous random variable if its range space R, is an interval or
a collection of intervals.

® The probability that x lies in the interval [a, b] is given by:

Pla=X =b) =ff(r)dr

® flx)is called the probability density function (PDF) of x, and
satisfies:

P P(X=[a.b])
l. f(x)=0, forallxm R, A J
Z.Rj'f(x)dx =1
3. f(x)=0, if x1snotin R,
* Properties . b *

1. P(X =x,)=0, because ﬂf(.r)dx‘ =0
Xa

2. PlasX<bh)=Pla<X<b)=PlasX <b)=Pla<X <Db)



Continuous Random Variables

e Example: Life of an inspection device is given by X, a
continuous random variable with PDF:

x=z0

0 _otherwise

* X has exponential distribution with mean 2 years

* Probability that the device’s life is between 2 and 3 years is:

1,
2=sx<3)=—[ e “dx=0.145
PQ2<x<3) zﬁe dxv =0.145



Cumulative Distribution Function

* Cumulative Distribution Function (CDF) is denoted by F(x), where
F(x)=P(X<x)

o If X is discrete, then F(x)= Ep(x")

« If X is continuous, then F(x)={ f(r)adr

®* Properties

1. F isnondecreasing function. If a < b. then F(a) < F(b)
2. lmF(x)=1

X—=

L]

. lim F(x)=0

I —=—00

* All probability questions about X can be answered in terms of the CDF:
Pla=X =b)=F(b)-F(a). forall a<bh



Cumulative Distribution Function

e Example: The inspection device has CDF:
. I -t/2 -x/2
F(:\)—Eﬁe dt =1-e

* The probability that the device lasts for less than 2 years:

P(0sX<2)=F(2)-F(0)=F(2)=1-¢"=0.632

* The probability that it lasts between 2 and 3 years:

—_—

PQ<X<3)=F()-F@2)=[l-e7)-(1-¢1)=0.143



Expected value

* The expected value of X is denoted by E(X)

* If X is discrete E(X)= ;1};?(1})

* If X is continuous E(X) =fm v f(x)dx

* a.k.a the mean, m, u, or the 1s* moment of X
* A measure of the central tendency



Variance

® The variance of X is denoted by ¥(X) or Var(X) or o2

» Definition: V(X)) =E((X-E[X])?)

* Also VX)) = EQX°) - (EQ) )

* A measure of the spread or variation of the possible values of X around the

mean

f)

large

> Y

fix)

small
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Standard deviation

* The standard deviation (SD) of X is denoted by ¢

* Definition: 0= ﬂIIV(I}

» The standard deviation is expressed in the same units as the mean
* Interprete o always together with the mean

* Attention:
* The standard deviation of two different data sets may be difficult to compare



Expected value and variance: Example

e Example: The mean of life of the previous inspection
device is:

- 1 & _x/2 . —x/2 i " _x/2 "
E(}L}=3f xe Tdx==X€ +J; e Tdx=2
0

2Jo

® To compute the variance of .Y, we first compute £(1?):

+f e ’dx =8

® Hence, the variance and standard deviation of the
device's life are: p(x)=8-2"=4

E(j{j)=—f TE’IE(??Y——Y € X

"

o=V (X)=2



Expected value and variance: Example

—Tf2

1 =
E(X)= —f xe dx ==X

27J0

—

+f 2y =2

Partial Integration

fu(x)v'(r)df = u(x)(x) —fu'{.t‘)r(r)dx
Set
u(x)=x
Vi(x)=e "
—

u'(x) =1

v(x)=-2e"

E(X)= %ﬁ: xe Py = —{T (—2¢7? ‘ fl (=277 dx)



Mean and variance of sums

® If x.x, ... x, are k random variables and if ¢, a,, ....a, are k
constants, then

E(ayxta,t.. Fax,) = a E(x ) Fa,E(xy)+. . FaE(x;)

¢ For independent variables

Var(a,x, +a,x, +---+a,x,) = a; Var(x,) +a; Var(x,) +...+a; Var(x,)



Coefficient of variation

e The ratio of the standard deviation to the mean is called
coefficient of variation (C.0.V.)

* Dimensionless
¢ Normalized measure of dispersion

standard deviation o
COV = =— >0

mearl U

¢ Can be used to compare different datasets, instead the
standard deviation.



Covariance

* Given two random variables x and y with x4 _and g, their
covariance is defined as

Cov(x,v)= ij}- =F [(1‘-qu)(1-‘-;{_1_.)] = E(xy) - E(x) E(v)

¢ Cov(x.1) measures the dependency of x and y, i.e., how x and v
vary together.

¢ For independent variables, the covariance is zero, since

E(xy) = E(x)E(y)



Correlation coefficient

¢ The normalized value of covariance is called the
correlation coefficient or simply correlation

2
o,

0.0,

Correlation(x,v) = p, , =

® The correlation lies between -1 and +1



Quantile

¢ The x value at which the CDF takes a value a is called the
ao~-quantile or 100a-percentile. It is denoted by x_

PX=x,)=Fkx,)=a , ag[0,1]

e Relationship:
e The median is the 50-percentile or 0.5-quantile



Mean, median, and mode

¢ Three different indices for the central tendency of a
distribution:

e Mean: E(jf:} == EPI.. - =fx J"f(l‘)fﬁ'

* Median: The 0.5-quantile, i.e., the x;for that half of the values
are smaller and the other half is larger.

* Mode: The most likely value, i.e., the x; that has the highest
probabiliy p. or the x at which the PDF is maximum.
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Selecting among
mean, median, and mode

Select central
tendency

Is data Yes

categorial? Use mode
Is total of
interest? Use mean
Is Yes
distribution Use median
kewed?

Use mean



Useful Statistical Models

* Queuelng systems

* Inventory and supply-chain systems
- Reliability and maintainability

- Limited data



Queueing Systems

In a queueing system, inter arrival and service-time
patterns can be probabilistic

Sample statistical models for inter arrival or service
time distribution:

« Exponential distribution: if service times are completely
random

* Normal distribution. fairly constant but with some
random variability (either positive or negative)

* Truncated normal distribution: similar to normal
distribution but with restricted value.

* Gamma and Weibull distribution: more general than
exponential (involving location of the modes of pdf’'s and
the shapes of tails.)



Inventory and supply chain

In realistic inventory and supply-chain systems, there are at least
three random variables:

* The number of units demanded per order or per time period
* The time between demands

* The lead time (time between the placing of an order for stocking
the inventory system and the receipt of that order)

Sample statistical models for lead time distribution:
- Gamma

Sample statistical models for demand distribution:

« Poisson: simple and extensively tabulated.

* Negative binomial distribution: longer tail than Poisson (more
large demands).

* Geometric: special case of negative binomial given at least one
demand has occurred.



Reliability and maintainability
Time to failure (TTF)

« Exponential: failures are random

* Gamma: for standby redundancy where each component
has an exponential TTF

« Weibull: failure is due to the most serious of a large
number of defects in a system of components

 Normal: failures are due to wear



Other areas

For cases with Iimited data, some useful distributions
are:

* Uniform, triangular and beta

Other distribution: Bernoulli, binomial and hyper-
exponential.



Discrete Distributions

Discrete random variables are used to describe random
phenomena 1in which only integer values can occur.
In this section, we will learn about:

* Bernoulli trials and Bernoulli distribution

* Binomaial distribution

* Geometric and negative binomial distribution

* Poisson distribution



Bernoulli Trials and Bernoulli Distribution

The Bernoulli distribution 1s a special case of the binomial
distribution where there is only a single trial. It is the simplest
type of probability distribution, representing a single experiment
that has exactly two possible outcomes: success or failure.

Key Characteristics of the Bernoulli Distribution:
Binary Outcomes:

* The experiment or trial has only two possible outcomes, typically
labeled as "success" (often represented by 1) and "failure" (often
represented by 0).

Single Trial:

* There 1s only one trial or experiment, meaning the Bernoulli
distribution describes the outcome of just one event.

Probability of Success (p):

* The probability of success in the trial is denoted by p.
Consequently, the probability of failure is 1—p.



Bernoulli Trials and Bernoullit Distribution

Bernoulli Trials:

* Consider an experiment consisting of n trials, each can be a
success or a failure.
— Let X; = 1 1f the jt trial is a success with probability p

— and X; = 0 if the j* trial is a failure

-

P, X; =1, j=12,...,n
pj(xj)Zp(Xj)=<1—P=q, XjZO, j:1,2,---,n
0, otherwise

* For one trial, it 1s called the Bernoulli distribution where E(Xj) =
pand V(X)) =p(1-p) =pq

Bernoulli process:

* The n Bernoulli trials where trails are independent:

P(X, %50, X,) =P 1(X)D(xX5) ... D,(X,)



Example of a Bernoulli Distribution:
Consider flipping a fair coin once. The possible outcomes are:
e Success (getting heads) with probability p = 0.5

* Failure (getting tails) with probability 1 — p = 0.5

Here, X is a Bernoulli random variable that can take the value 1 (for heads) or 0

(for tails).

e The expected value E(X) = 0.5, representing the probability of getting
heads.

 The variance Var(X) = 0.5 x 0.5 = 0.25.



Relation to the Binomial Distribution:

The Bernoulli distribution 1s a special case of the binomial
distribution with n=1. In other words, a binomial distribution
with only one trial is equivalent to a Bernoulli distribution.

Applications of the Bernoulli Distribution:

Coin Tosses: Representing the probability of getting heads (success) or
tails (failure) in a single coin toss.

Pass/Fail Tests: Determining the probability of passing or failing a single
test or trial.

Customer Behavior: Modeling whether a customer makes a purchase
(success) or does not make a purchase (failure) in a single interaction.

Used to generate discrete random variate such as binomial and geometric

The Bernoulli distribution is fundamental in probability and statistics,
serving as the building block for more complex distributions like the
binomial distribution. It is used in situations where there is a simple,
binary outcome in a single trial or experiment.



Binomial Distribution

* Gives probability of number of successes in n independent trials,
when probability of success p on single trial is a constant.

 To determine the probability of a particular outcome with all the
success.

 K.g. what is the probability of 8 or more “tails” in 10 tosses of a fair
coin?

 (Can be sometimes approximated by normal or by Poisson
distribution.

Applications: used frequently in quality control, reliability, survey
sampling and other industrial problems.

* To classify defective or non defective items in a batch of size n.

* Find out demand (no of items) placed by a customer in case of
inventory problem.



The binomial distribution is a discrete probability distribution
that describes the number of successes in a fixed number of
independent trials of a binary (yesmo or success/failure)
experiment. Each trial is identical, and the probability of success
remains constant across all trials.

Key Characteristics of the Binomial Distribution:

Binary Outcomes:

« Each trial in a binomial experiment has only two possible
outcomes: "success" or "failure."

Fixed Number of Trials (n):
* The number of trials, denoted by n, 1s fixed in advance.
Constant Probability of Success (p):

* The probability of success in each trial is the same and is
denoted by p. Consequently, the probability of failure is 1-p.

Independent Trials:

* The trials are independent, meaning the outcome of one trial
does not affect the outcome of another.



Binomial Distribution

The number of successes 1in n Bernoull: trials, X, has a binomial distribution.

( n
p(x):<[ j p*q"*, x=012,...,n

4 0, otherwise
4 The number of

outcomes having the Probability that
required number of there are
successes and X successes and
\_ failures Y, (n-x) failures
- /

Easy approach is to consider the binomial distribution X as a sum of
n independent Bernoulli Random variables (X=X1+X2+...+Xn)

* The mean, E(X)=p+p+...+p=n*p
* The variance, V(X) =pq + pq +... + pg =n*pq



Example of a Binomial Distribution:

Suppose you flip a fair coin 10 times (so n = 10), and you want to find the
probability of getting exactly 4 heads. Here, the probability of getting a head on
any single flip is p = 0.9, and the probability of getting tailsis 1 — p = 0.5.

Using the binomial distribution formula:

me:4y=(f)m5ﬁm5f

First, calculate the binomial coefficient (10):

4
10 10! —10X9X8X7—210
4) 4(10-4", 4x3x2x1
Then, calculate the probability:
P(X =4) =210 x (0.5)" =210 x ~ 0.205
( ) (0.5) 1024

So, the probability of getting exactly 4 heads in 10 flips is approximately 0.205 (or
20.5%).



Example: The probability of a chip failure is 0.05. everyday a
random sample of size 14 is taken. What is the probability that

1) At most 3 will fail
1) At least 3 will fail.



Applications of the Binomial Distribution:

Quality Control: For example, determining the probability of
finding a certain number of defective products in a batch.

Clinical Trials: Estimating the likelihood of a certain number of
patients responding to a treatment.

Sports: Calculating the probability of a player achieving a certain
number of hits in a given number of attempts.

The binomial distribution is widely used in statistics to model
scenarios where there are fixed numbers of independent trials,
each with the same probability of success.



Geometric Distribution

* G1ves probability of requiring exactly x Bernoulli trials before the first
success 1s achieved.

«  E.g. determination of probability of requiring exactly five tests firings
before first success is achieved.

« A doctor 1s seeking an anti-depressant for a newly diagnosed patient.
Suppose that, of the available anti-depressant drugs, the probability
that any particular drug will be effective for a particular patient is
p=0.6.

*  What is the probability that the first drug found to be effective for this
patient is the first drug tried, the second drug tried, and so on? What is
the expected number of drugs that will be tried to find one that is
effective?

« A patient is waiting for a suitable matching kidney donor for a
transplant. If the probability that a randomly selected donor is a
suitable match is p=0.1, what is the expected number of donors who will
be tested before a matching donor is found?



The geometric distribution is a discrete probability distribution that
models the number of trials required to get the first success in a
sequence of independent and identically distributed Bernoulli trials
(each with the same probability of success). It is used to determine the
probability that the first occurrence of success requires a specific
number of trials.

Key Characteristics of the Geometric Distribution:

Binary Outcomes:

- Each trial in a geometric experiment has two possible outcomes: success
or failure.

Independent Trials:

* The trials are independent, meaning the outcome of one trial does not
affect the outcome of another.

Constant Probability of Success (p):

* The probability of success p is constant across all trials.

Number of Trials Until First Success:

* The geometric distribution is concerned with the number of trials, X,
until the first success occurs.



The negative binomial distribution is a discrete probability distribution
that models the number of trials required to achieve a specified number
of successes in a sequence of independent and identically distributed
Bernoulli trials. It generalizes the geometric distribution, which 1s a
special case where the number of successes required 1s 1.

Key Characteristics of the Negative Binomial Distribution:

Binary Outcomes:

- Each trial in the negative binomial experiment has two possible
outcomes: success or failure.

Independent Trials:

* The trials are independent, meaning the outcome of one trial does not
affect the outcome of another.

Constant Probability of Success (p):

* The probability of success p 1s constant across all trials.

Number of Successes (r):

* The distribution is concerned with the number of trials needed to
achieve a specified number of successes r.



The probability mass function (PMF) of the negative
binomial distribution is given by:

Px=0= (1" )ra-n"

where:

e X is the random variable representing the number of trials needed to achieve

T successes.
® kisthe number of trials (where k > 7).
® pis the probability of success on each trial.
e 1 — pis the probability of failure on each trial.

. (f i) =& (f')!(?! o) is the binomial coefficient, representing the number of

ways to arrange 7 — 1 successes in the first & — 1 trials.



Special Case - Geometric Distribution:

The geometric distribution is a special case of the negative binomial
distribution when r=1. In this case, the distribution models the
number of trials needed to achieve the first success.

Mean (Expected Value):

The mean (expected value) of a negative binomial distribution is given by:

E(X) = g

This represents the average number of trials needed to achieve r successes.

Variance:

The variance of a negative binomial distribution is given by:

Var(X) = ’*"—(lpz P)

This variance measures the variability in the number of trials required to achieve r

Successes.



Example of a Negative Binomial Distribution:
Suppose you are rolling a fair six-sided die, and you want to know the probability

that the 3rd time you roll a 6 occurs on the 7th roll.

Here, the probability of success (rolling a 6) is p = % and the probability of failure

.}l

(notrollinga6)isl —p = % You are interested in the number of trials k = 7
required to achieve r = 3 successes.
Using the negative binomial distribution formula:

e G (0

First, calculate the binomial coefficient:

6 6! 6 x5
2 216 —2)!  2x1

Then, calculate the probability:

3 4
1 5} 1 625
P(X = =1 — — =1 ~ 0.032
( 7) 5><(6) x(ﬁ) 5X216x1296 0.03

So, the probability that the 3rd 6 occurs on the 7th roll is approximately 0.032, or
3.2%.




Geometric & Negative Binomial Distribution

Geometric distribution (Used frequently in data networks)
* The number of Bernoulli trials, X, to achieve the 15t success:

g'p, x=012,...,n

P(FFF...FS)=p(x) =
( )= P {O, otherwise

* E(x)=1/p, and V(X) =q/p?

Negative binomial distribution
* The number of Bernoulli trials, X, until the &t success
- If Yis a negative binomial distribution with parameters p and k, then:

(y-1
(z J D¢, y=kk+Llk+2,..

0, otherwise
« E(Y)=Fk/p, and V(X) = kq/p?
* Yis the sum of k independent geometric RVs

p(x) =1




Suppose you are rolling a fair six-sided die, and you want to know the probability

that the first time you roll a 6 occurs on the 3rd roll.

Here, the probability of success (rolling a 6) is p = %, and the probability of failure

(notrollinga6)is1 —p = z.

Using the geometric distribution formula:

5\* ' 1 5\% 1
P(X =3) = () X & = (6) 6~ 0.1157

So, the probability that you first roll a 6 on the 3rd roll is approximately 0.1157, or
11.57%.



Properties of the Geometric Distribution:
1. Memorylessness:

® The geometric distribution has the "memoryless” property, meaning the
probability of success on the next trial is independent of the number of
failures that have already occurred. Mathematically, P(X > k +
m|X > k)= P(X > m).

2. Skewness:

¢ The geometric distribution is typically right-skewed, meaning there are
more small values (fewer trials) and fewer large values (more trials) in the

distribution.

Applications of the Geometric Distribution:

* Quality Control: Determining the number of items inspected before finding

the first defective item.

® Customer Behavior: Modeling the number of customer interactions before

the first purchase is made.

e Reliability Testing: Estimating the number of trials needed before the first

system failure occurs.



Geometric & Negative Binomial Distribution

Example: 40% of the assembled ink-jet printers are rejected at the inspection
station. Find the probability that the first acceptable ink-jet printer is the third
one inspected. Considering each inspection as a Bernoulli trial with ¢=0.4 and

p=0.6,
p(3) =0.42(0.6) = 0.096

Thus, 1in only about 10% of the cases is the first acceptable printer is the
third one from any arbitrary starting point

What is the probability that the third printer inspected is the second acceptable
printer?

Use Negative Binomial Distribution with y=3 and k=2

p(3)= , 0.4*%(0.6)° =0.288



Poisson Distribution

«  Gives probability of exactly x independent occurrences during a
given period of time. If events take place independently and at
constant rate.

- May also represent number of occurrences over constant areas or
volumes.

- E.g. used to represent distribution of number of defects in a piece
of material, customer arrivals, insurance claims, incoming
telephone calls etc..

* Frequently used as approximation to binomial distribution.



Poisson Distribution

Poisson distribution describes many random processes quite well
and 1s mathematically quite simple. The pmf and cdf are:

e “a’” X o=@,
— e "o
PO =1 X T F=)
0, otherwise =
where o > 0 "t re
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Poisson Distribution

Example: A computer repair person 1s “beeped” each
time there 1s a call for service. The number of beeps
per hour ~ Poisson(a = 2 per hour).

* The probability of three beeps in the next hour:
p(3) =e223/3/=0.18
also, p(3) =FB3)-F(2)=0.857-0.677=0.18

* The probability of two or more beeps in a 1-hour period:
p(2 or more) =1-p(0)—p(l)
=1-F(1)
=0.594



The number of accidents in a year to taxi driver in Mumbai follows
a Poisson distribution with mean equal to 3. out of 100 taxi drivers,
find approximately the number of drivers with:

1) No accident in a year

1) More than 3 accidents in a year



Continuous Distributions

Continuous random variables can be used to describe
random phenomena in which the variable can take on
any value in some interval.

In this section, the distributions studied are:
* Uniform
- Exponential
* Normal

* Weibull

* Lognormal



Uniform Distribution

A random variable X is uniformly distributed on the interval (a,bd),

U(a,b), if 1ts pdf and cdf are:

0, X<a
—— . as<x<hb X—a
f(X)=<p_3g F(x)=<b—, asx<b
: —a
0, otherwise 1 «>b
f(x) & F(x) A
02 ¢ ; 1.0 -
i : 0.8 |-
1 1
i I 0.6 |
0.1 :
: : 0.4}
Lo . i A .
1 2 3 4 5 6 X 01 2 3 4 5 6 X

Example witha=1and b =6




Uniform Distribution

Properties

* P(x, < X <x,)1s proportional to the length of the
interval [F(x,)— F(x;) = (x5-x,;)/(b-a)]

. E(X) = (a+b)/2 VIX) = (b-a)?/12

U(0,1) provides the means to generate random numabers,
from which random variates can be generated.

Example: In a warehouse simulation, a call comes to a
forklift operator about every 4 minutes. With such a
limited data, 1t 1s assumed that time between calls 1s

uniformly distributed with a mean of 4 minutes with
(a=0 and b=8)




Exponential Distribution

A random variable X is exponentially distributed with parameter A >

0 if its pdf and cdf are:

- X >
£ (x) = Ae™" x>0
0, elsewhere

cEX)=1/2 V(X)=1/22

* Used to model interarrival times
when arrivals are completely
random, and to model service times
that are highly variable

* For several different exponential
pdf’s (see figure), the value of
intercept on the vertical axis is A,
and all pdf’s eventually intersect.

fx)

0, X=<0
F(x) = jX/Ie‘”dt =1-e*, x>0

0

2.0

0'0().0 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30 x




Exponential Distribution

Example: A lamp life (in thousands of hours) is
exponentially distributed with failure rate (A = 1/3),
hence, on average, 1 failure per 3000 hours.

* The probability that the lamp lasts longer than its
“mean life” 1s: P(X>3)=1-(1-e33) =el =0.368

* This is independent of A. That is, the probability
that an exponential random variable is greater
than it’s mean is 0.368 for any A

* The probability that the lamp lasts between 2000 to
3000 hours 1s:

P2<X<3)=F3)-F(2)=0.145



Exponential Distribution

Memoryless property is one of the important properties of
exponential distribution

* Foralls>0andt>0:
PX>s+t | X>s)=P(X >t)=P(X>s+t)/P(s) = e

+ Let X represent the life of a component and 1s exponentially
distributed. Then, the above equation states that the
probability that the component lives for at least s+t hours,
given that it survived s hours i1s the same as the probability
that it lives for at least ¢ hours. That 1s, the component
doesn’t remember that it has been already in use for a time s.
A used component is as good as new!!!

« Light bulb example: The probability that it lasts for
another 1000 hours given it is operating for 2500 hours is the
same as the new bulb will have a life greater than 1000 hours

PX>35|X>25=PX>1)=el/3=0.717




Normal Distribution

A random variable X 1s normally distributed has the pdf:

N Mean: —oo<lLl<oQ f(x) A
* Variance: 5250 /\
* Denoted as X ~ N(u,0%) n ]

Special properties:
lim___ f(x)=0,andlim,__f(x)=0

* f(u-x)=f(u+x); the pdf 1s symmetric about z.

* The maximum value of the pdf occurs at x = 1, the mean and
mode are equal.



Normal Distribution

The CDF of Normal distribution is given by

F(x)=P(X < x)=j_X L exp

1

2

|

—u
O

:

dt,

It 1s not possible to evaluate this in closed form

Numerical methods can be used but 1t would be
necessary to evaluate the integral for each pair (u, o?).

A transformation of variable allows the evaluation to be

independent of 1 and o.



Normal Distribution

Evaluating the distribution:

* Independent of u and o, using the standard normal distribution:
Z ~N(0,1)

* Transformation of variables: let Z = (X - 1) / o,

F(x)=P(X <x)= P(Z < X_“j
O

c(x—u)lo 1 _ 279
= e dz
J—00 /272-
~(x—p)lo X
=| $(2)dz = D (=F)

where ®(z) :r %e‘tz’zdt is very well tabulated.
o 27



Exponential Distribution

Example: The time required to load an ocean going vessel, X, 1s
distributed as N(12,4)

* The probability that the vessel 1s loaded in less than 10 hours:

F(10) = cp(%] = d(-1) =0.1587

— Using the symmetry property, ®(1) is the complement of ®@ (-1),
le., ®(-1)=1- ®(1)

&(2) 4 &(z) A

0.1587

Y




Normal Distribution

Example: The time to pass through a queue to begin
self-service at a cafeteria is found to be N(15,9). The

probability that an arriving customer waits between 14
and 17 minutes is:

P(14<X<17) = F(17)-F(14)
= H(17-15)/3) - §(14-15)/3)
= #(0.667)-¢(-0.333) = 0.3780



Normal Distribution

Transformation of pdf for the

. f(x) A
queue example 1s shown here
0.3780
Y.
/% 0-2 -
%
Ypu=15 17 X
(a)
$(z) 4

Zlnmngy

ISR A



Weibull Distribution

A random variable X has a Weibull distribution if its pdf has the form:

-

B(x-vY " x—vY
f<x>=<;(7) exp[‘(aj } t=y

0, otherwise

\

3 parameters:

* Location parameter: v,

(—o0 <V <0)
* Scale parameter: 3, (6> 0)
« Shape parameter. «, (> 0) i
Example: v=0and a = I: |-t

14

12

Exponential Distribution

B=1
\ 08

When ,8: 1, 04
X ~ exp(/1 = 1/0[) 021

0.0 | |\.|_\ TR e — —

| | \ |
00 02 04 06 08 10 1.2 14 16 18 20 22 24 26 28 30 x



Weibull Distribution

The mean and variance of Weibull is given by

E(X):v+al“(%+1j

oG]

whereT'(.) is a Gamma function defined as T'(3)= J'xﬂ‘le‘xdx
0

If Bis aninteger, I'(8)= (5 -1)
The CDF is given by

| s
FO0 =, 1—exp{—(x_v) } X >V
a




Weibull Distribution

Example: The time it takes for an aircraft to land and clear the runway at
a major international airport has a Weilbull distribution with 1v=1.35
minutes, /=0.5, @=0.04 minute. Find the probability that an incoming
aircraft will take more than 1.5 minute to land and clear the runway.

P(X >15)=1-P(X <1.5)

0.5
P(X <1.5)=F(L5) :l—exp[—(l'SO_OlfA'j }:0.865

Therefore, the probability that an aircraft will require
more than 1.5 minutes to land and clear runway is
1-0.865=0.135 minutes



Lognormal Distribution

A random variable X has a lognormal distribution if its pdf has the

form: 1.5
1 Inx—u)
exp—( 2”) , x>0 ] =1,
F(X) =1 V2rox 26 . 2=0.5,1,2.
0, otherwise ~ = |
+ Mean E(X) = ento™2 05
« Variance V(X) = e2#+072 (go” . 1) '
- Note that parameters u and o° are not o H———r— =
. 0 1 2
the mean and variance of the lognormal x

Relationship with normal distribution
* When Y ~ N(u, 6°), then X =e¥ ~ lognormal(u, 62)



Lognormal Distribution

If the mean and variance of lognormal are known to be
w1, and o respectively, then the parameters 1 and o is given by :

2
\/IUL_I_GL

Example: The rate of return on a volatile investment is modeled as
lognormal with mean 20% (=;) and standard deviation 5%
(=01 ?). What are the parameters for lognormal?

- 1= 2.9654; 52=0.06



Poisson Process

Definition: N(t), t>0 is a counting function that represents the
number of events occurred i1n [0,¢].

- e.g., arrival of jobs, e-mails to a server, boats to a dock, calls
to a call center

A counting process {N(t), t>0} is a Poisson process with mean
rate A if:

 Arrivals occur one at a time

- {N(t), t>0} has stationary increments: The distribution
of number of arrivals between ¢ and ¢+s depends only on
the length of interval s and not on starting point ¢. Arrivals
are completely random without rush or slack periods.

- {N(t), t >0} has independent increments: The number
of arrivals during non-overlapping time intervals are
independent random variables.



Poisson Process

Properties

-t
PIN (t) = n] =& (’“) . fort=0andn=012,..

* Equal mean and variance: E[/N(t)] = V[N(t)] = At

« Stationary increment: For any s and ¢, such that s <t, the
number of arrivals in time s to ¢ 1s also Poisson-distributed with
mean A(t-s)

PIN(S) = N() =n] = & [j!(t S o n=o12..

and E[N(t)- N(s)]=A(t—s)=V[N(t)- N(s)]




Interarrival Times

Consider the inter-arrival times of a Possion process (4,, A,, ...), where A, 1s
the elapsed time between arrival i and arrival i+1

|
0 { Al Al +A2
!: Ay >!< A2—>‘

* The 1% arrival occurs after time t iff there are no arrivals in the interval
[0,t], hence:

P{A, >t} =P{N(t) =0} =e*H
PA, <t}=1-eH [cdf of exp(M)]

* Inter-arrival times, A, A,, ..., are exponentially distributed and
independent with mean 1/1

Arrival counts Inter-arrival time
~ Poisson(A) ~ Exp(1/1)



Poisson Process

The jobs at a machine shop arrive according to a Poisson
process with a mean of A = 2 jobs per hour. Therefore,
the inter-arrival times are distributed exponentially
with the expected time between arrivals being E(A)=1/
A=0.5 hour



Other Properties

Splitting:
« Suppose each event of a Poisson process can be classified as Type I,
with probability p and Type 11, with probability I-p.

* N(t) = N,(t) + Ny(t), where N,(t) and N,(t) are both Poisson processes
with rates Ap and A(I1-p)

Ap N1(t) ~ Poisson[Ap]
N(t) ~ Poisson(4) A :/
\ N2(t) ~ Poisson[A(1-p)]

A(1-p)

Pooling:
« Suppose two Poisson processes are pooled together
* N,(t) + Ny(t) = N(t), where N(t) is a Poisson processes with rates 1, + 4,

N1(t) ~ Poisson[A4/] 7‘1 7¥1 N 7¥2
»> N(t) ~ Poisson(4, +4,)

N2(t) ~ Poisson[4,]



Poisson Process

Example: Suppose jobs arrive at a shop with a Poisson
process of rate A. Suppose further that each arrival is
marked “high priority” with probability 1/3 (Type I
event) and “low priority” with probability 2/3 (Type 11
event). Then N,(t) and N,(t) will be Poisson with rates
A3 and 2 A/3.



Non-stationary Poisson Process (NSPP)

Poisson Process without the stationary increments, characterized by A(?), the
arrival rate at time ¢. (Drop assumption 2 of Poisson process, stationary
Increments)

The expected number of arrivals by time ¢, A(%):

t
A0 = | 26ds

Relating stationary Poisson process N(t) with rate A=1 and NSPP N(t) with
rate A(%):

* Let arrival times of a stationary process with rate A =1 be ¢, ,,
..., and arrival times of a NSPP with rate A(t) be T, T, ..., we
know:

t. = A(T) [Expected # of arrivals]
T,= A1)

* An NSPP can be transformed into a stationary Poisson process
with arrival rate 1 and vice versa.



Non-stationary Poisson Process (NSPP)

Example: Suppose arrivals to a Post Office have rates 2 per minute from 8 am
until 12 pm, and then 0.5 per minute until 4 pm.

Let t = 0 correspond to 8 am, NSPP N(t) has rate function:

2, 0<t<4
Alt) =
0.5 4<t<8

Expected number of arrivals by time t:

2t, O0<t<4

A(t) = j042ds+j:0.5ds =%+6, 4<t<8

Hence, the probability distribution of the number of arrivals between 11 am
and 2 pm, corresponds to times 3 and 6 respectively.

PN, (6) - N,(3) = k] = P[N(A(6)) - N(A(3)) = k]
=P[N(9) - N(6) = k]
= e(%9(9-6)"/ k! =e3(3)/k!



Empirical Distributions

A distribution whose parameters are the observed values in a sample
of data.

« May be used when it is impossible or unnecessary to establish that
a random variable has any particular parametric distribution.

- Advantage: no assumption beyond the observed values in the
sample.

* Disadvantage: sample might not cover the entire range of possible
values.



Empirical Example — Discrete

Customers at a local restaurant arrive at lunch time in groups of
eight from one to eight persons. The number of persons per party in
the last 300 groups has been observed. The results are summarized
in Table 5.3. A histogram of the data is plotted and a CDF is
constructed. The CDF is called the empirical distribution

Table 5.3 Arrivals per Party Distribution

Arrivals per Relative Cumulative Relative
Party Freguency Frequency Frequency
1 30 0.10 0.10
2 110 0.37 0.47
3 45 0.15 0.62
4 71 0.24 0.86
5 12 0.04 0.90
6 13 0.04 0.94
7 7 0.02 0.96
8 12 0.04 1.00




Empirical Example — Discrete
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Empirical Example - Continuous

The time required to repair a conveyor system that has
suffered a failure has been collected for the last 100
Instances; the results are shown in Table 5.4. There
were 21 instances in which the repair took between O
and 0.5 hour, and so on. The empirical cdf 1s shown in
Figure 5.29. A piecewise linear curve is formed by the
connection of the points of the form [x,F(x)]. The
points are connected by a straight line. The first
connected pair 1s (0, 0) and (0.5, 0.21); then the points
(0.5, 0.21) and (1.0, 0.33) are connected; and so on.



Empirical Example — Continuous

Table 5.4 Repair Times for Conveyor

Relative Cumulative

Interval (Hours) Frequency Frequency Frequency
0<x<05 21 0.21 0.21
05<x<1.0 12 0.12 0.33
1.0<x €15 29 0.29 0.62
5<% £.2.0 19 0.19 0.81
20<x <25 8 0.08 0.89
25 <x <3.0 11 011 1.00




Empirical Example — Continuous
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A college professor of electrical engg 1s leaving home for the
summer, but would like to have a light burning at all times to
discourage burglars. The professor rigs up a device that will hold
two light bulbs. The device will switch the current to the second
bulb if the first bulb fails. The box in which the light bulbs are
packaged says, "Average life 1000 hrs, exponentially
distributed.” the professor will be gone 90 days (2160 hrs). What
1s the probability that a light will be burning when the summer
1s over and the professor returns?



