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Purpose 

 Simulation is often used in the analysis of queueing models. 

 A simple but typical queueing model: 

 

 

 

 Queueing models provide the analyst with a powerful tool for 

designing and evaluating the performance of queueing 

systems. 

 Typical measures of system performance:  

 Server utilization, length of waiting lines, and delays of customers 

 For relatively simple systems, compute mathematically 

 For realistic models of complex systems, simulation is usually 

required. 
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Outline 

 Discuss some well-known models (not development 

of queueing theories): 

 General characteristics of queues, 

 Meanings and relationships of important performance 

measures, 

 Estimation of mean measures of performance. 

 Effect of varying input parameters, 

 Mathematical solution of some basic queueing models. 
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Characteristics of Queueing Systems 

 Key elements of queueing systems: 
 Customer: refers to anything that arrives at a facility and requires 

service, e.g., people, machines, trucks, emails. 

 Server: refers to any resource that provides the requested 

service, e.g., repairpersons, retrieval machines, runways at 

airport. 
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Calling Population   

   [Characteristics of Queueing System] 

 Calling population: the population of potential customers, 

may be assumed to be finite or infinite. 

 Finite population model: if arrival rate depends on the number of 

customers being served and waiting, e.g., model of one corporate 

jet, if it is being repaired, the repair arrival rate becomes zero. 

 Infinite population model: if arrival rate is not affected by the 

number of customers being served and waiting, e.g., systems 

with large population of potential customers. 
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System Capacity   

    [Characteristics of Queueing System] 

 System Capacity: a limit on the number of customers 

that may be in the waiting line or system. 
 Limited capacity, e.g., an automatic car wash only has room for 

10 cars to wait in line to enter the mechanism. 

 Unlimited capacity, e.g., concert ticket sales with no limit on the 

number of people allowed to wait to purchase tickets. 
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Arrival Process    

    [Characteristics of Queueing System] 

 For infinite-population models: 

 In terms of interarrival times of successive customers. 

 Random arrivals: interarrival times usually characterized by a 

probability distribution. 

 Most important model: Poisson arrival process (with rate l), where 

An represents the interarrival time between customer n-1 and 

customer n, and is exponentially distributed (with mean 1/l). 

 Scheduled arrivals: interarrival times can be constant or constant 

plus or minus a small random amount to represent early or late 

arrivals. 

 e.g., patients to a physician or scheduled airline flight arrivals to an 

airport. 

 At least one customer is assumed to always be present, so the 

server is never idle, e.g., sufficient raw material for a machine. 
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Arrival Process    

    [Characteristics of Queueing System] 

 For finite-population models: 

 Customer is pending when the customer is outside the queueing 

system, e.g., machine-repair problem: a machine is “pending” 

when it is operating, it becomes “not pending” the instant it 

demands service form the repairman. 

 Runtime of a customer is the length of time from departure from 

the queueing system until that customer’s next arrival to the 

queue, e.g., machine-repair problem, machines are customers 

and a runtime is time to failure. 

 Let A1
(i), A2

(i), … be the successive runtimes of customer i, and 

S1
(i), S2

(i) be the corresponding successive system times: 
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Queue Behavior and Queue Discipline  

    [Characteristics of Queueing System] 

 Queue behavior: the actions of customers while in a queue 

waiting for service to begin, for example: 

 Balk: leave when they see that the line is too long, 

 Renege: leave after being in the line when its moving too slowly, 

 Jockey: move from one line to a shorter line. 

 Queue discipline: the logical ordering of customers in a queue 

that determines which customer is chosen for service when a 

server becomes free, for example: 

 First-in-first-out (FIFO) 

 Last-in-first-out (LIFO) 

 Service in random order (SIRO) 

 Shortest processing time first (SPT) 

 Service according to priority (PR). 



10 

Service Times and Service Mechanism  

    [Characteristics of Queueing System] 

 Service times of successive arrivals are denoted by S1, 

S2, S3. 

 May be constant or random. 

 {S1, S2, S3, …} is usually characterized as a sequence of 

independent and identically distributed random variables, e.g., 

exponential, Weibull, gamma, lognormal, and truncated normal 

distribution. 

 A queueing system consists of a number of service 

centers and interconnected queues. 

 Each service center consists of some number of servers, c, 

working in parallel, upon getting to the head of the line, a 

customer takes the 1st available server. 
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Service Times and Service Mechanism  

    [Characteristics of Queueing System] 

 Example: consider a discount warehouse where 

customers may: 

 Serve themselves before paying at the cashier: 
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Service Times and Service Mechanism  

    [Characteristics of Queueing System] 

 Wait for one of the three clerks: 

 

 

 

 

 

 

 

 

 

 

 

 Batch service (a server serving several customers 
simultaneously), or customer requires several servers 
simultaneously. 
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Queueing Notation  

    

 A notation system for parallel server queues:  A/B/c/N/K 
 A represents the Interarrival-time distribution, 

• M(Markovian, memoryless, exponential) 

• D(constant or deterministic) 

• Ek  (Erlang of order k) 

• G(general or arbitrary) 

• GI(general independent) 

• H(hyper exponential) 

• PH(phase - type) 

 B represents the service-time distribution, same as A 

 c represents the number of parallel servers – 1, multiple, infinite 

 N represents the system capacity or queue size – finite, infinite 

 K represents the size of the calling population - finite, infinite 

E.g. G/G/1/∞/ ∞ represents a single server system that has unlimited queue 
capacity and an infinite population of potential customers. The interarrival and 
service times are general. 
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Queueing Notation  

    [Characteristics of Queueing System] 

 Primary performance measures of queueing systems: 
 Pn:  steady-state probability of having n customers in system, 

 Pn(t):  probability of n customers in system at time t, 

 l:  arrival rate, 

 le: effective arrival rate, 

 m: service rate of one server, 

 r: server utilization, 

 An: interarrival time between customers n-1 and n, 

 Sn: service time of the nth arriving customer, 

 Wn: total time spent in system by the nth arriving customer, 

 Wn
Q: total time spent in the waiting line by customer n, 

 L(t): the number of customers in system at time t, 

 LQ(t): the number of customers in queue at time t, 

 L: long-run time-average number of customers in system, 

 LQ: long-run time-average number of customers in queue, 

 w : long-run average time spent in system per customer, 

 wQ: long-run average time spent in queue per customer. 
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Time-Average Number in System L  

    [Characteristics of Queueing System] 

 Consider a queuing system over a period of time T, 

 Let Ti denote the total time during [0,T] in which the system 

contained exactly i customers, the time-weighted-average number 

in a system is defined by: 

 

 

 Consider the total area under the function is L(t), then, 

 

 

 

 The long-run time-average # in system, with probability 1: 
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Time-Average Number in System L  

    [Characteristics of Queueing System] 

 The time-weighted-average number in queue is: 

 

 

 

 G/G/1/N/K example: consider the results from the queuing system 

(N > 4, K > 3). 
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Average Time Spent in System Per 

Customer w  [Characteristics of Queueing System] 

 The average time spent in system per customer, called 

the average system time, is: 

 

 

 where W1, W2, …, WN are the individual times that each of the N 

customers spend in the system during [0,T]. 

 For stable systems: 

 If the system under consideration is the queue alone: 

 

 

 G/G/1/N/K example (cont.): the average system time is 
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The Conservation Equation 
   [Characteristics of Queueing System] 

 Conservation equation (a.k.a. Little’s law) 

 

 

 

 

 

 Holds for almost all queueing systems or subsystems (regardless 

of the number of servers, the queue discipline, or other special 

circumstances). 

 G/G/1/N/K example (cont.): On average, one arrival every 4 time 

units and each arrival spends 4.6 time units in the system.  

Hence, at an arbitrary point in time, there is (1/4)(4.6) = 1.15 

customers present on average. 
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Server Utilization 
   [Characteristics of Queueing System] 

 Definition: the proportion of time that a server is busy. 

 Observed server utilization,   , is defined over a specified time 

interval [0,T]. 

 Long-run server utilization is r. 

 For systems with long-run stability:  T    as    ˆ rr

r̂
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Server Utilization 
   [Characteristics of Queueing System] 

 For G/G/1/∞/∞ queues: 

 Any single-server queueing system with average arrival 

rate l customers per time unit, where average service time 

E(S) = 1/m time units, infinite queue capacity and calling 

population. 

 Conservation equation, L = lw, can be applied. 

 For a stable system, the average arrival rate to the server, 

ls, must be identical to l. 

 The average number of customers in the server is: 
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Server Utilization 
   [Characteristics of Queueing System] 

 In general, for a single-server queue: 

 

 

 

 For a single-server stable queue: 

 

 For an unstable queue (l  m), long-run server utilization is 1. 
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Server Utilization 
   [Characteristics of Queueing System] 

 For G/G/c/∞/∞ queues: 

 A system with c identical servers in parallel. 

 If an arriving customer finds more than one server idle, the 

customer chooses a server without favoring any particular 

server. 

 For systems in statistical equilibrium, the average number of 

busy servers, Ls, is: Ls, = lE(s) = l/m. 

 The long-run average server utilization is: 
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Server Utilization and System Performance 
   [Characteristics of Queueing System] 

 System performance varies widely for a given utilization r. 

 For example, a D/D/1 queue where E(A) = 1/l and E(S) = 

1/m, where: 

L = r = l/m,   w = E(S) = 1/m,   LQ = WQ = 0. 

 By varying l and m, server utilization can assume any value 

between 0 and 1. 

 Yet there is never any line. 

 In general, variability of interarrival and service times 

causes lines to fluctuate in length. 
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Server Utilization and System Performance 
   [Characteristics of Queueing System] 

 Example: A physician who schedules patients every 10 minutes and 

spends Si minutes with the ith patient: 

 

 Arrivals are deterministic, A1 = A2 = … = l-1 = 10. 

 Services are stochastic, E(Si) = 9.3 min and V(S0) = 0.81 min2. 

 On average, the physician's utilization = r  l/m = 0.93 < 1. 

 Consider the system is simulated with service times: S1 = 9, S2 = 

12, S3 = 9, S4 = 9, S5 = 9, ….  The system becomes: 

 

 

 

 

 The occurrence of a relatively long service time (S2 = 12) causes a 

waiting line to form temporarily. 
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Costs in Queueing Problems 
   [Characteristics of Queueing System] 

 Costs can be associated with various aspects of the 
waiting line or servers: 
 System incurs a cost for each customer in the queue, say at a rate 

of $10 per hour per customer. 

 The average cost per customer is: 

 

 

 If    customers per hour arrive (on average), the average cost 
per hour is:  

 

 

 Server may also impose costs on the system, if a group of c 
parallel servers (1  c  ∞) have utilization r, each server imposes 
a cost of $5 per hour while busy. 

 The total server cost is:   $5*cr. 
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Steady-State Behavior of Infinite-Population 

Markovian Models 

 Markovian models: exponential-distribution arrival process 

(mean arrival rate = l). 

 Service times may be exponentially distributed as well (M) or 

arbitrary (G). 

 A queueing system is in statistical equilibrium if the probability 

that the system is in a given state is not time dependent:   

   P( L(t) = n ) = Pn(t) = Pn. 

 Mathematical models in this chapter can be used to obtain 

approximate results even when the model assumptions do not 

strictly hold . 

 Simulation can be used for more refined analysis (more faithful 

representation for complex systems). 



27 

Steady-State Behavior of Infinite-Population 

Markovian Models 

 For the simple model studied in this chapter, the steady-state 

parameter, L, the time-average number of customers in the 

system is: 

 

 

 Apply Little’s equation to the whole system and to the queue alone: 

 

 

 

 

 G/G/c/∞/∞ example: to have a statistical equilibrium, a 

necessary and sufficient condition is l/(cm) < 1. 
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M/G/1 Queues  [Steady-State of Markovian Model] 

 Single-server queues with Poisson arrivals & unlimited capacity. 

 Suppose service times have mean 1/m  and variance s2 and r = l/m 

< 1, the steady-state parameters of M/G/1 queue: 

 

 

 

 

 

 )1(2

)/1(
   ,

)1(2

)/1(1

)1(2

)1(
    ,

)1(2

)1(

1    ,/

2222

222222

0

r

sml

r

sml

m

r

msr

r

msr
r

rmlr























Q

Q

ww

LL

P



29 

M/G/1 Queues  [Steady-State of Markovian Model] 

 No simple expression for the steady-state probabilities P0, P1, …  

 L – LQ = r is the time-average number of customers being 

served. 

 Average length of queue, LQ, can be rewritten as: 

 

 

 

 If l and m are held constant, LQ depends on the variability, s2, of the 

service times. 
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M/G/1 Queues  [Steady-State of Markovian Model] 

 Example: Two workers competing for a job, Able claims to be faster 
than Baker on average, but Baker claims to be more consistent,  
 Poisson arrivals at rate l = 2 per hour (1/30 per minute). 

 Able: 1/m = 24 minutes and s2 = 202 = 400 minutes2: 
 

 

 

 

 The proportion of arrivals who find Able idle and thus experience no delay is P0 
= 1-r = 1/5 = 20%. 

 Baker: 1/m = 25 minutes and s2 = 22 = 4 minutes2: 
 

 

 

 

 The proportion of arrivals who find Baker idle and thus experience no delay is 
P0 = 1-r = 1/6 = 16.7%. 

 Although working faster on average, Able’s greater service variability 
results in an average queue length about 30% greater than Baker’s. 
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M/M/1 Queues  [Steady-State of Markovian Model] 

 Suppose the service times in an M/G/1 queue are 

exponentially distributed with mean 1/m, then the variance 

is s2 = 1/m2.  

 M/M/1 queue is a useful approximate model when service 

times have standard deviation approximately equal to their 

means. 

 The steady-state parameters: 

 

 

  )1(
   ,

)1(

11

1
    ,

1

1     ,/

22

rm

r

lmm

l

rmlm

r

r

lmm

l

r

r

lm

l

rrmlr



























Q

Q

n
n

ww

LL

P



32 

M/M/1 Queues  [Steady-State of Markovian Model] 

 Example: M/M/1 queue with service rate m10 customers 

per hour. 

 Consider how L and w increase as arrival rate, l, increases from 5 

to 8.64 by increments of 20%: 

 

 

 

 

 If l/m  1, waiting lines tend to continually grow in length. 

 Increase in average system time (w) and average number in 

system (L) is highly nonlinear as a function of r. 

l 5.0 6.0 7.2 8.64 10.0

r 0.500 0.600 0.720 0.864 1.000

L 1.00 1.50 2.57 6.35 ∞

w 0.20 0.25 0.36 0.73 ∞
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Effect of Utilization and Service Variability
    [Steady-State of Markovian Model] 

 For almost all queues, if lines are too long, they can be reduced 

by decreasing server utilization (r) or by decreasing the service 

time variability (s2). 

 A measure of the variability of a distribution, coefficient of 

variation (cv): 

 

 

 The larger cv is, the more variable is the distribution relative to its 

expected value 
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Effect of Utilization and Service Variability
    [Steady-State of Markovian Model] 

 Consider LQ for any M/G/1 

queue: 
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Multiserver Queue [Steady-State of Markovian Model] 

 M/M/c/∞/∞ queue: c channels operating in parallel. 

 Each channel has an independent and identical exponential 

service-time distribution, with mean 1/m. 

 To achieve statistical equilibrium, the offered load (l/m) must 

satisfy l/m < c, where l/(cm) = r is the server utilization. 

 Some of the steady-state probabilities: 
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Multiserver Queue [Steady-State of Markovian Model] 

 Other common multiserver queueing models: 

 M/G/c/∞: general service times and c parallel server.  The 

parameters can be approximated from those of the M/M/c/∞/∞ 

model. 

 M/G/∞: general service times and infinite number of servers, e.g., 

customer is its own system, service capacity far exceeds service 

demand. 

 M/M/C/N/∞: service times are exponentially distributed at rate m 

and c servers where the total system capacity is N  c customer 

(when an arrival occurs and the system is full, that arrival is turned 

away). 
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Steady-State Behavior of Finite-Population 

Models  

 When the calling population is small, the presence of one or 

more customers in the system has a strong effect on the 

distribution of future arrivals. 

 Consider a finite-calling population model with K customers 

(M/M/c/K/K): 

 The time between the end of one service visit and the next call for 

service is exponentially distributed, (mean = 1/l). 

 Service times are also exponentially distributed. 

 c parallel servers and system capacity is K. 
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Steady-State Behavior of Finite-Population 

Models 

 Some of the steady-state probabilities: 
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Steady-State Behavior of Finite-Population 

Models 

 Example: two workers who are responsible for10 milling 

machines.  

 Machines run on the average for 20 minutes, then require an 

average 5-minute service period, both times exponentially 

distributed: l = 1/20 and m = 1/5. 

 All of the performance measures depend on P0: 

 

 

 Then, we can obtain the other Pn. 

 Expected number of machines in system: 

 

 

 The average number of running machines: 
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Networks of Queues 

 Many systems are naturally modeled as networks of single 

queues: customers departing from one queue may be routed 

to another. 

 The following results assume a stable system with infinite 

calling population and no limit on system capacity: 

 Provided that no customers are created or destroyed in the 

queue, then the departure rate out of a queue is the same as the 

arrival rate into the queue (over the long run). 

 If customers arrive to queue i at rate li, and a fraction 0  pij  1 of 

them are routed to queue j upon departure, then the arrival rate 

form queue i to queue j is lipij (over the long run). 
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Networks of Queues 

 The overall arrival rate into queue j: 

 

 

 

 

 

 If queue j has cj < ∞ parallel servers, each working at rate mj, then 

the long-run utilization of each server is rj=lj/(cmj) (where rj < 1 

for stable queue). 

 If arrivals from outside the network form a Poisson process with 

rate aj for each queue j, and if there are cj identical servers 

delivering exponentially distributed service times with mean 1/mj, 

then, in steady state, queue j behaves likes an M/M/cj queue with 
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Network of Queues 

 Discount store example:  

 Suppose customers arrive at the rate 80 per hour and 40% 

choose self-service. Hence: 

 Arrival rate to service center 1 is l1 = 80(0.4) = 32 per hour 

 Arrival rate to service center 2 is l2 = 80(0.6) = 48 per hour. 

 c2 = 3 clerks and m2 = 20 customers per hour. 

 The long-run utilization of the clerks is: 

    r2 = 48/(3*20) = 0.8 

 All customers must see the cashier at service center 3, the 

overall rate to service center 3 is l3 = l1 + l2 = 80 per hour. 

 If m3 = 90 per hour, then the utilization of the cashier is: 

   r3 = 80/90 = 0.89 
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Summary  

 Introduced basic concepts of queueing models. 

 Show how simulation, and some times mathematical analysis, can 

be used to estimate the performance measures of a system. 

 Commonly used performance measures: L, LQ, w, wQ, r, and le. 

 When simulating any system that evolves over time, analyst must 

decide whether to study transient behavior or steady-state behavior. 

 Simple formulas exist for the steady-state behavior of some queues. 

 Simple models can be solved mathematically, and can be useful in 

providing a rough estimate of a performance measure. 

 



 Problem Statement 1 

 

  Arrivals at a telephone booth are considered to be Poisson, with an 

average time of 10 minutes between one arrival and the next. The 

length of a phone call is assumed to be distributed exponentially 

with mean 3 minutes. Find: 

 The probability that an arrival finds that four persons are waiting for 

their turn; 

 The average number of persons waiting and making telephone calls; 

and 

 The average length of the queue that is formed from time to time. 
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 Problem Statement 2:  

 

The Service Station has a central store where service mechanics arrive 

to take spare parts for the jobs they work upon. The mechanics wait in 

queue if necessary and are served on a first-come-first-served basis. 

The store is manned by one attendant who can attend 8 mechanics in 

an hour on an average. The arrival rate of the mechanics averages 6 

per hour. Assuming that the pattern of mechanics arrivals is Poisson 

distributed and the servicing time is exponentially distributed, determine 

Ws,  Wq and Lq where the symbols carry their usual meaning. 
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Problem Statement 3: 

 Customers arrive at the First Class Ticket counter of a Theatre at a 

rate of 12 per hour. There is on clerk serving the customers at a rate 

of 30 per hour 

 What is the probability that there is no customer in counter (i.e. that 

the system is idle)? 

 What is the probability that there are more than 2 customers in the 

counter? 

 What is the probability that there is no customer waiting to be 

served? 

 What is the probability that a customer is being served and nobody 

is waiting? 
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Problem Statement 4: 

 The rate of arrival of customer at a public telephone follows Poisson 

distribution, with an average time of ten minutes between one 

customer and the next. The duration of a phone call is assume to 

follow exponential distribution with a mean time of three minutes 

 What is the probability that person arriving at the booth will have a 

wait? 

 What is the average length of the queue? 

 The Mahangar Telephone Nigam Ltd. will install another booth when 

it is convinced that the customers would have a wait for at least 

three minutes for their turn to make a call. How much should be the 

flow of customers in order to justify a second booth? 
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Problem Statement 5: 

 A warehouse has only one loading dock manned by a three person 

crew. Trucks arrive at the loading dock at a n average rate of 4 

trucks per hour and be the arrivals are Poisson distributed. The 

loading of a truck takes 10 minutes on an average and the loading 

time can be assumed to be exponentially distributed about this 

average. The operating cost of a truck is Rs. 100 per hour and the 

members of the loading crew are paid at a rate of Rs 25 per hour. 

Assuming that the addition of new crew members would reduce the 

loading time to 7.5 minutes, would you advise the truck owner to add 

another crew of three persons? 
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Problem Statement 6: 

 (a) A typist at an office receives, on an average, 22 letters per day of typing. 

The typist works 8 hours a day and it takes on an average 20 minutes to 

type a letter. The company has determined that the cost of a letter waiting to 

be mailed (opportunity cost) is 80 paisa per hour and the equipment 

operating cost plus the salary of the typist will be Rs. 40 per day. 

 What is the typist’s utilization rate? 

 What is the average number of letters waiting to be typed? 

 What is the average waiting time needed to have letter typed? 

 What is the total cost of waiting letters to be mailed? 

 Forced to improve the letter typing service, the above company is planning 

to take lease of one of the two models of an automated typewriter available 

in the market. The daily costs and the resulting increase in the typist’s 

efficiency are displayed in the table given below: 
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 (b) Forced to improve the letter typing service, the above company 

is planning to take lease of one of the two models of an automated 

typewriter available in the market. The daily costs and the resulting 

increase in the typist’s efficiency are displayed in the table given 

below: 

 

 

 

 

 What action should the company take to minimize the total daily 

costs of waiting letters to be mailed? 
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Model 
Additional Cost per 

Day 

Increase in Typist’s 

Efficiency 

I Rs. 37 50% 

Ii Rs. 39 75% 



Problem Statement 7: 

 

 On an average, 4 patients per hour require the service of an 

emergency clinic. Also, on an average, a patient requires 10 minutes 

of active attention. The clinic can handle only one emergency at a 

time. Suppose that it costs the clinic Rs. 300 per patient treated to 

obtain an average servicing time of 10 minutes and that each minute 

of decrease in this average time would cost Rs. 50 per patient 

treated. How much would have to be budgeted by the clinic to 

decrease the average size of the queue from 4/3 patients to 1/2 

patients? 
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 Problem Statement 8 

 

 Hospital Emergency Department 

Patients arrive at an emergency department following a random pattern 

influenced by time of day, with typically higher rates during evening 

hours. The time each patient spends receiving treatment varies widely, 

influenced by the nature of their emergencies. 

Task: Determine the most suitable queue model to analyze patient wait 

times and resource utilization. Justify your choice based on the 

distribution characteristics of arrival and service times. 
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 Problem Statement 9 

 

 Retail Store Checkout 

Scenario: A retail store has checkout counters where customers arrive 

randomly but with increased frequency during sales or holiday seasons. 

Each cashier works at a different speed, and some have fixed times 

due to the complexity of transactions. 

Task: Choose a queuing model to evaluate the efficiency of the 

checkout process during peak and off-peak hours. Discuss the factors 

that influenced your choice of model and how it impacts the analysis of 

service efficiency and customer wait times. 
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 Problem Statement 10 

 

 Software Update Downloads 

 

Scenario: Users download a critical software update released 

simultaneously worldwide. The download requests arrive at servers at a 

rate that sharply increases and then stabilizes. The server handles 

each request with varying times depending on the user's internet speed 

and server load. 

Task: Identify the best queuing model to study the download wait times 

and server response times under varying loads. Provide reasons for 

your choice and consider the nature of both arrival and service 

processes. 
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 Problem Statement 11 

 

 Comparative Analysis of Different Distributions: 

Consider a simulation of customer arrivals at a retail store. If you model 

the arrivals using a Poisson distribution versus a normal distribution, 

how might the results differ in terms of customer flow and queue 

management? What factors would influence your choice of distribution? 
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