Continuous Probability
Distribution Models



Continuous probability distributions describe the
probabilities of the outcomes of a continuous random
variable. Unlike discrete distributions, where the
random variable can take on specific, distinct values,
continuous distributions deal with variables that can
take on any value within a given range. Here are some
of the most common continuous probability
distributions:



1. Uniform Distribution

e Description: The uniform distribution is the simplest continuous distribution.

All outcomes in a specified range [a, b] are equally likely.

* Probability Density Function (PDF):
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e Variance:

e Example: The time of day someone arrives at a bus stop within a 10-minute

interval if they arrive randomly.



2. Normal (Gaussian) Distribution

Description: The normal distribution is the most widely used distribution in
statistics, characterized by its bell-shaped curve. It is symmetric around its

mean and describes many natural phenomena.

Probability Density Function (PDF):
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where 11 is the mean and o2 is the variance.

e Mean: u

e Variance: o2

e Example: Heights of people, measurement errors, IQ scores.



Exponential Distribution

Description: The exponential distribution models the time between events in
a Poisson process, where events occur continuously and independently at a

constant average rate.

Probability Density Function (PDF):

f(z) = Aexp(—Az), forxz >0

where A > 0 is the rate parameter.

Mean: 1

2

Variance: %

Example: Time between arrivals of buses, time until a radioactive particle

decays.



4. Gamma Distribution

e Description: The gamma distribution generalizes the exponential distribution
and models the time until an event occurs k times, where k is a positive

integer.

* Probability Density Function (PDF):
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where A > (0 is the rate parameter and k > 0 is the shape parameter.

¢ Mean: %

e Variance: 32

e Example: Waiting time for the k-th event in a Poisson process.



5. Beta Distribution

e Description: The beta distribution is defined on the interval [0, 1] and is often
used to model random variables that represent proportions or probabilities.

¢ Probability Density Function (PDF):
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where @ > 0 and 8 > 0 are shape parameters, and B(a;, ) is the beta
function.

¢ Mean: —3
Variance: 2“'3
(a+B)*(a+5+1)

e Example: Modeling the probability of success in a binomial distribution.



6. Log-Normal Distribution

e Description: A random variable is log-normally distributed if its logarithm is

normally distributed. It models variables that can grow exponentially.

¢ Probability Density Function (PDF):
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where i and o are the mean and standard deviation of the variable's natural

logarithm.

* Mean: exp (,u, + %2)
e Variance: [exp(o'z) — 1} exp (Q,u + 0‘2)

e Example: Stock prices, income distribution.



7. Weibull Distribution

e Description: The Weibull distribution is used extensively in reliability analysis
and life data analysis (survival analysis). It can model the time until failure of a

product.

¢ Probability Density Function (PDF):
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where k is the shape parameter and A is the scale parameter.
e Mean: A\I (1 + %)
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e Variance: \? {F (1 + E) — (F (1 — I)) ]

e Example: Predicting the life span of a mechanical component.



Applications and Usage

e Uniform Distribution:

— Application: Used in scenarios where each outcome in a range is
equally likely. Common in simulations, where random numbers
uniformly distributed over an interval are needed.

— Usage: Generating random numbers, modeling random events with no
preference for any outcome.

— Properties: Constant probability across the interval, mean is the
midpoint of the interval.

* Normal (Gaussian) Distribution:

— Application: Widely used in natural and social sciences to model
phenomena that cluster around a central value with symmetrical
variation.

— Usage: Measuring 1Q, heights, errors in measurements, financial
market returns.

— Properties: Symmetric bell-shaped curve, defined by mean and
standard deviation, most data within three standard deviations from
the mean.



Applications and Usage
* Exponential Distribution:

» Application: Models time between independent events that

happen at a constant average rate, such as radioactive decay
or time between arrivals in a Poisson process.

» Usage: Queuing theory, reliability analysis, survival analysis.

» Properties: Memoryless, right-skewed, mean and standard
deviation are equal.

e Gamma Distribution:

» Application: Extends the exponential distribution for
modeling waiting times until multiple events occur.
» Usage: Life testing, reliability engineering, insurance claims.

» Properties: Right-skewed, mean depends on the shape and
scale parameters.



e Beta Distribution:

» Application: Used to model random variables that are

constrained to an interval [0, 1], such as proportions or
probabilities.

» Usage: Bayesian statistics, modeling probabilities, project
management (PERT).

» Properties: Flexible shape depending on the parameters,
can be symmetric or skewed.

* Log-Normal Distribution:

» Application: Used to model variables that grow
multiplicatively, such as stock prices, human body
measurements, or income distributions.

» Usage: Financial modeling, reliability engineering,
environmental data analysis.

» Properties: Positively skewed, mean and variance of the
logarithm are parameters.



e Weibull Distribution:

» Application: Common in reliability engineering and
failure analysis to model life data.

» Usage: Estimating product life, reliability testing,
survival analysis.

» Properties: Flexible shape parameter, can model
increasing or decreasing failure rates.



The Poisson process is a stochastic process that models a series of events
occurring randomly over time or space, where these events happen independently
of one another and at a constant average rate. The Poisson process is a
fundamental concept in probability theory and is widely used in various fields such
as telecommunications, traffic engineering, queueing theory, and reliability

engineering.
Key Characteristics of the Poisson Process:

1. Independence of Events:

e The events in a Poisson process occur independently. The occurrence of
an event in any interval does not affect the occurrence of an event in any

other interval.



. Constant Average Rate (A):

e The events occur at a constant average rate A (events per unit of time or

space). This rate is also known as the intensity or arrival rate.

. No Simultaneous Events:

¢ In a Poisson process, the probability of two or more events occurring at

the exact same time is zero.
. Stationarity:

® The probability of an event occurring in a given interval depends only on
the length of the interval, not on the specific position or start time of the

interval. This implies that the process has stationary increments.

. Poisson Distribution of Event Counts:

e The number of events occurring in a fixed interval of time or space
follows a Poisson distribution. If N (t) represents the number of events

by time £, then:
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where k is the number of events, At is the expected number of events in

time £, and e is the base of the natural logarithm.



6. Exponential Inter-Arrival Times:

¢ The time between consecutive events (called the inter-arrival time)
follows an exponential distribution with parameter A. The probability that

the time until the next event occurs is greater than ¢ is given by:

P(T >t)=e™

Mathematical Definition:
A Poisson process is often defined by the following conditions:
1. N(0) = 0: The process starts with no events at time t = 0.

2. Stationary Increments: The number of events occurring in any interval of time
depends only on the length of the interval, not on its position on the time

axis.

3. Independent Increments: The number of events occurring in disjoint intervals

of time are independent.

4. Poisson Distribution: For any ¢t > 0, N (t) follows a Poisson distribution with

parameter A\t.



Applications of the Poisson Process:

Queuing Theory:
Modeling the arrival of customers at a service station, such as a bank teller or a
call center.
Analyzing traffic flow, such as cars passing through a toll booth.
Telecommunications:
Modeling the arrival of phone calls at a call center or packet arrivals in a
network.
Reliability Engineering:
Estimating the number of failures of a system or component over a period of
time.
Physics and Astronomy:
Counting the number of radioactive particles detected by a Geiger counter or
the number of stars in a given region of the sky.
Biology:
Modeling the occurrence of mutations in a strand of DNA or the arrival of
molecules at a receptor site.
Insurance and Risk Management:
Modeling the number of claims arriving at an insurance company over time.



Properties of the Poisson Process:

e Additivity:
— If N(t1) and N(t2) are independent Poisson processes with

rates A1 and A2, then their sum is a Poisson process with
rate A1+A2.

* Superposition:

— If two or more independent Poisson processes with
different rates are combined, the resulting process is also a
Poisson process with a rate equal to the sum of the
individual rates.

* Thinning:
— |f each event in a Poisson process is independently

retained with probability p, the resulting process is still a
Poisson process with rate pA.



Examples of Poisson Process:

e Arrivals at a Bank:

— Customers arrive at a bank at an average rate of 5 per hour. The
number of customers arriving in any given hour follows a Poisson
distribution with a mean of 5.

* Radioactive Decay:

— A Geiger counter detects radioactive particles at an average rate of 3
particles per minute. The time between detections follows an
exponential distribution, and the number of particles detected in a
given time interval follows a Poisson distribution.

e (Call Center:

— Phone calls arrive at a call center at a rate of 20 calls per hour. The
number of calls in any hour follows a Poisson distribution, and the
time between successive calls follows an exponential distribution.



* A Non-stationary Poisson process (also known as an
inhomogeneous Poisson process) is a generalization
of the standard (stationary) Poisson process where
the rate at which events occur is not constant over
time. Instead, the rate of occurrence, known as the
intensity function or rate function, varies with time.



Key Characteristics of the Non-Stationary Poisson Process:

1. Time-Dependent Rate Function (A(%)):

In a non-stationary Poisson process, the rate at which events occur,
denoted by A(), is a function of time. This means that the probability of
an event occurring in a small time interval [¢,t + At| depends on the

value of (%) at time ¢.

A(t) can vary over time, reflecting changes in the intensity of events. For
example, traffic flow might be heavier during rush hours and lighter

during the night.



2. Non-Homogeneous Events:

e Because the rate function varies, the events are not uniformly distributed
over time. The likelihood of an event occurring changes depending on

the time of day, week, or season, making the process non-stationary.
3. Poisson Distribution of Events in Short Intervals:

* For small time intervals [t, ¢ + At], the number of events occurring is
approximately Poisson distributed with mean A(t) At. However, unlike in

a stationary Poisson process, this mean is not constant over time.



4. Cumulative Rate Function (A(%)):

e The cumulative rate function A(t) is the integral of the rate function over

time, given by:

A(t) = fn A(s) ds

e A(t) represents the expected number of events that have occurred by

time 2.
5. Conditional Intensity:

e The intensity A(t) at time  can be interpreted as the instantaneous rate
of events given the history of the process up to time £. It is the limit of
the expected number of events in an infinitesimally small time interval

divided by the length of the interval.



Applications of the Non-Stationary Poisson Process:

Traffic Flow:

Modeling the arrival of vehicles at an intersection or toll booth, where traffic
density varies throughout the day (e.g., rush hour vs. late night).

Telecommunications:
Analyzing call arrivals at a call center where the call rate fluctuates during the day
(e.g., more calls during business hours and fewer calls during the night).

Natural Events:
Modeling the occurrence of earthquakes, where the likelihood of an earthquake
can change over time due to underlying geophysical processes.

Healthcare:
Modeling patient arrivals at an emergency room, where arrival rates vary by time
of day, day of the week, or season.

Finance:
Modeling transaction arrival times in financial markets, where trading activity
varies throughout the trading day.



Properties of the Non-Stationary Poisson Process:

1. Time-Dependent Mean:

® The expected number of events by time  is given by the cumulative rate
function A(t). The distribution of the number of events in a time interval

depends on the specific form of A(t).

2. Non-Stationary Increments:

* The number of events occurring in disjoint intervals is independent, but
unlike in a stationary process, these increments are not identically

distributed because A(t) changes over time.

3. Transforming to a Stationary Process:

® A non-stationary Poisson process can be transformed into a stationary
Poisson process by a time change, using the cumulative rate function
A(t). This technique is useful for analyzing non-stationary processes

using methods applicable to stationary processes.



Mathematical Representation:

Event Count: The number of events in the interval [U, ﬂ, denoted by N(t),

follows a Poisson distribution with mean A(t):

Inter-Arrival Times: The time between consecutive events may not follow an
exponential distribution, as it does in a stationary Poisson process. However,
conditional on the history, the expected time to the next event depends on

the current value of A(t).



Example of a Non-Stationary Poisson Process:

Imagine a bus stop where buses arrive according to a non-stationary Poisson
process. During rush hour (8-10 AM), buses arrive more frequently, so A(t) is
higher during this period. After rush hour, the rate decreases, and A(t) reflects this
lower frequency. Modeling the arrival of buses using a non-stationary Poisson
process allows for a more realistic representation of the varying arrival rates

throughout the day.

The non-stationary Poisson process is a powerful tool for modeling events that
occur at varying rates over time. It extends the standard Poisson process by
allowing for time-varying intensities, making it suitable for a wide range of real-
world applications where the assumption of a constant event rate is not realistic.
Understanding and applying non-stationary Poisson processes can lead to more

accurate models and predictions in scenarios where event rates change over time.



