

Somaiya Vidyavihar University

 (A Constituent College of Somaiya Vidyavihar University)

CSM – Sem-VII- July – Nov 2024 Department of Computer Engineering Page

1

Title: Random Number Generation and Hypothesis Testing

Objective: The objective of this lab experiment is to generate random arrival times for

vehicles using a Linear Congruential Generator (LCG), simulate vehicle arrivals at

an intersection with traffic light control, and perform hypothesis testing on the

generated random numbers to ensure their randomness and uniformity using

Python SimPy discrete-event simulation library.

Expected Outcome of Experiment:

CO3: Generate pseudorandom numbers and perform statistical tests to measure the

quality of a pseudorandom number generator.

Books/ Journals/ Websites referred:

1. “Discrete-Event System Simulation” by Jerry Banks, John S. Carson II, Barry L.

Nelson, David M. Nicol.

2. SimPy Documentation: https://simpy.readthedocs.io/en/latest/

3. SciPy Documentation: https://docs.scipy.org/doc/scipy/

Background:

(Explain in brief Random number generation techniques and Chi-square, ks and runs up

and down Hypothesis testing)

Problem Statement:

1. Random Number Generation for Vehicle Arrivals:

● Implement a Linear Congruential Generator (LCG) to generate uniform random

numbers.
● Transform these uniform random numbers into exponential inter-arrival times to

model a Poisson arrival process.

2. Visualization:

● Plot a histogram of the generated exponential inter-arrival times to visualize their

distribution.

Batch: A1 Roll No.: 16010121045

Experiment / Assignment / Tutorial No. 6

Somaiya Vidyavihar University

 (A Constituent College of Somaiya Vidyavihar University)

CSM – Sem-VII- July – Nov 2024 Department of Computer Engineering Page

2

3. Simulation of Traffic Flow:

● Using the generated arrival times, simulate the traffic flow at an intersection

controlled by a traffic light.
● Model the service time at the intersection as an exponential random variable.
● Control the traffic light with alternating green and red phases.

4. Testing Random Numbers:

● Perform a Chi-square test to compare the observed frequency distribution of the

uniform random numbers to the expected uniform distribution.
● Conduct a Kolmogorov-Smirnov (K-S) test to compare the distribution of the

generated random numbers to a uniform distribution.
● Execute a Runs up and down test to check the randomness of the sequence by

counting the number of runs (increasing or decreasing sequences).

5. Analysis

● Analyze the results of the Chi-square test, K-S test, and Runs up and down test

to determine the uniformity and randomness of the generated random numbers.
● Discuss the effectiveness of the random number generation and the validity of the

traffic simulation model based on these results.

Implementation Steps with Screen shots:

Python Code:-

import numpy as np

import matplotlib.pyplot as plt

import simpy

import random

import math # Import the math module directly

Linear Congruential Generator (LCG)

def LCG(seed, a, c, m, n):

 random_numbers = []

 x = seed

 for _ in range(n):

 x = (a * x + c) % m

 random_numbers.append(x / m)

 return random_numbers

Somaiya Vidyavihar University

 (A Constituent College of Somaiya Vidyavihar University)

CSM – Sem-VII- July – Nov 2024 Department of Computer Engineering Page

3

Exponential Inter-arrival Times

def exponential_interarrival_times(uniform_random_numbers, rate):

 return [-np.log(1 - u) / rate for u in uniform_random_numbers]

Traffic Simulation Using SimPy

def vehicle_arrivals(env, traffic_light, interarrival_times):

 for i, interarrival_time in enumerate(interarrival_times):

 yield env.timeout(interarrival_time)

 print(f"Vehicle {i} arrives at time {env.now}")

 if traffic_light.green_phase:

 print(f"Vehicle {i} passes at time {env.now}")

 else:

 print(f"Vehicle {i} waits at red light at time {env.now}")

def traffic_light_control(env, traffic_light):

 while True:

 traffic_light.green_phase = True

 # print("Green light ON")

 yield env.timeout(5) # Green phase for 30 seconds

 traffic_light.green_phase = False

 # print("Red light ON")

 yield env.timeout(5) # Red phase for 30 seconds

class TrafficLight:

 def __init__(self):

 self.green_phase = True

Hypothesis Testing: Manual Chi-square Test

def chi_square_test(uniform_random_numbers):

 observed, _ = np.histogram(uniform_random_numbers, bins=10)

 expected = len(uniform_random_numbers) / 10

 chi2_stat = sum((obs - expected)**2 / expected for obs in observed)

 p_val = 1 - chi2_cdf(chi2_stat, 9) # degrees of freedom = bins - 1

 return chi2_stat, p_val

def chi2_cdf(x, k):

 return gammainc(k / 2, x / 2)

def gammainc(s, x):

 return (1 - np.exp(-x) * sum((x**k / math.factorial(k)) for k in range(int(s))))

Hypothesis Testing: Manual Kolmogorov-Smirnov Test

def ks_test(uniform_random_numbers):

 n = len(uniform_random_numbers)

 sorted_nums = sorted(uniform_random_numbers)

Somaiya Vidyavihar University

 (A Constituent College of Somaiya Vidyavihar University)

CSM – Sem-VII- July – Nov 2024 Department of Computer Engineering Page

4

 D_plus = max((i+1)/n - sorted_nums[i] for i in range(n))

 D_minus = max(sorted_nums[i] - i/n for i in range(n))

 D = max(D_plus, D_minus)

 p_val = 1 - kolmogorov_smirnov_cdf(np.sqrt(n) * D)

 return D, p_val

def kolmogorov_smirnov_cdf(x):

 return 1 - 2 * np.exp(-2 * (x**2))

Hypothesis Testing: Manual Runs Test

def runs_test(uniform_random_numbers):

 n_runs = 1

 for i in range(1, len(uniform_random_numbers)):

 if uniform_random_numbers[i] > uniform_random_numbers[i-1]:

 n_runs += 1

 expected_runs = (2 * len(uniform_random_numbers) - 1) / 3

 variance = (16 * len(uniform_random_numbers) - 29) / 90

 z = (n_runs - expected_runs) / np.sqrt(variance)

 p_val = 2 * (1 - normal_cdf(abs(z)))

 return z, p_val

def normal_cdf(z):

 return (1.0 + math.erf(z / math.sqrt(2.0))) / 2.0 # Use math.erf for the error function

Main Function to Execute the Full Code

def main():

 # Step 1: Generate Random Numbers using LCG

 seed = 7

 a = 1664525

 c = 1013904223

 m = 2**32

 n = 100# Number of random numbers

 uniform_random_numbers = LCG(seed, a, c, m, n)

 # Step 2: Convert to Exponential Inter-arrival Times

 arrival_rate = 0.5 # vehicles per second

 interarrival_times = exponential_interarrival_times(uniform_random_numbers,

arrival_rate)

 # Step 3: Plot Histogram of Inter-arrival Times and save the figure

 plt.hist(interarrival_times, bins=30, edgecolor='k', alpha=0.7)

 plt.title("Histogram of Exponential Inter-arrival Times")

 plt.xlabel("Inter-arrival Time")

 plt.ylabel("Frequency")

 plt.savefig("interarrival_times_histogram.png") # Save plot as a file

 plt.close() # Close the figure to avoid displaying

Somaiya Vidyavihar University

 (A Constituent College of Somaiya Vidyavihar University)

CSM – Sem-VII- July – Nov 2024 Department of Computer Engineering Page

5

 # Step 4: Traffic Simulation

 env = simpy.Environment()

 traffic_light = TrafficLight()

 env.process(traffic_light_control(env, traffic_light))

 env.process(vehicle_arrivals(env, traffic_light, interarrival_times))

 env.run(until=300) # Run for 5 minutes

 # Step 5: Hypothesis Testing

 chi2_stat, chi2_p_val = chi_square_test(uniform_random_numbers)

 print(f"Chi-square test statistic: {chi2_stat}, p-value: {chi2_p_val}")

 ks_stat, ks_p_val = ks_test(uniform_random_numbers)

 print(f"KS test statistic: {ks_stat}, p-value: {ks_p_val}")

 runs_stat, runs_p_val = runs_test(uniform_random_numbers)

 print(f"Runs test statistic: {runs_stat}, p-value: {runs_p_val}")

Call the main function

main()

Somaiya Vidyavihar University

 (A Constituent College of Somaiya Vidyavihar University)

CSM – Sem-VII- July – Nov 2024 Department of Computer Engineering Page

6

Output:-

Somaiya Vidyavihar University

 (A Constituent College of Somaiya Vidyavihar University)

CSM – Sem-VII- July – Nov 2024 Department of Computer Engineering Page

7

Somaiya Vidyavihar University

 (A Constituent College of Somaiya Vidyavihar University)

CSM – Sem-VII- July – Nov 2024 Department of Computer Engineering Page

8

Somaiya Vidyavihar University

 (A Constituent College of Somaiya Vidyavihar University)

CSM – Sem-VII- July – Nov 2024 Department of Computer Engineering Page

9

Somaiya Vidyavihar University

 (A Constituent College of Somaiya Vidyavihar University)

CSM – Sem-VII- July – Nov 2024 Department of Computer Engineering Page

10

Somaiya Vidyavihar University

 (A Constituent College of Somaiya Vidyavihar University)

CSM – Sem-VII- July – Nov 2024 Department of Computer Engineering Page

11

Somaiya Vidyavihar University

 (A Constituent College of Somaiya Vidyavihar University)

CSM – Sem-VII- July – Nov 2024 Department of Computer Engineering Page

12

Conclusion:

In this experiment, we successfully implemented a Linear Congruential Generator (LCG)

for random number generation and simulated vehicle arrivals at an intersection controlled

by traffic lights. The generated random numbers were transformed into exponential inter-

arrival times, which helped in modeling a Poisson arrival process. The traffic flow was

simulated using SimPy, providing a realistic view of vehicle movements under

alternating green and red light phases.

The hypothesis tests conducted, including the Chi-square test, Kolmogorov-Smirnov

test, and Runs up and down test, provided a comprehensive analysis of the uniformity

and randomness of the generated random numbers. The Chi-square test showed that the

observed frequencies closely matched the expected uniform distribution, supporting the

randomness of the numbers. The Kolmogorov-Smirnov test further validated the uniform

distribution, while the Runs test confirmed the randomness in the sequence of numbers.

Overall, the random number generator exhibited acceptable quality, and the vehicle

traffic simulation provided meaningful insights into how random arrivals can be modeled

effectively. The experiment met its objective of testing and validating the randomness of

numbers and demonstrated the effectiveness of using such generators in discrete-event

simulations.

Somaiya Vidyavihar University

 (A Constituent College of Somaiya Vidyavihar University)

CSM – Sem-VII- July – Nov 2024 Department of Computer Engineering Page

13

Post lab Questions:

1. Explain Gap & Poker test with the help of example.

Gap Test:

The Gap Test checks the distribution of gaps (or intervals) between occurrences of a

certain number or range in a sequence of random numbers. It evaluates how often a

certain event happens and how many numbers occur between successive occurrences of

that event, ensuring uniformity in random number generation.

Example:

Suppose you generate the following sequence of random numbers:

0.12, 0.45, 0.82, 0.11, 0.35, 0.99, 0.18, 0.65, 0.89, 0.31

Let's say you are interested in gaps between numbers in the range [0.1, 0.2]. You identify

the positions of numbers falling in this range: 0.12 (1st position), 0.11 (4th position),

0.18 (7th position). Now, the gaps between occurrences are 3 and 3, since the numbers

appear at intervals of three in the sequence. By collecting data on such gaps over many

sequences, you can check if the gaps follow an expected distribution for uniform random

numbers.

Poker Test:

The Poker Test is used to check whether sequences of random numbers exhibit

characteristics similar to a poker hand. Random numbers are grouped into sets, and each

set is tested for patterns such as "one pair," "three of a kind," etc. This helps determine if

the numbers are uniformly distributed or if there's a pattern that suggests non-

randomness.

Example:

Let's take a sequence of 5-digit numbers:

64321, 43254, 11111, 53215, 12345

You check how many digits appear with the same frequency, just like in a poker hand.

For example:

Somaiya Vidyavihar University

 (A Constituent College of Somaiya Vidyavihar University)

CSM – Sem-VII- July – Nov 2024 Department of Computer Engineering Page

14

• 64321: all digits are different (high-card)

• 43254: all digits are different (high-card)

• 11111: five identical digits (five-of-a-kind)

• 53215: all digits are different (high-card)

• 12345: all digits are different (high-card)

By counting the number of high-cards, pairs, or other poker patterns in a long sequence

of numbers, you can check if the distribution is as expected for truly random numbers.

2. Consider the multiplicative Congruential generator under the following

circumstances:

a) X0 = 7, a = 11, m = 16

b) X0 = 8, a = 11, m = 16

c) X0 = 7, a = 7, m = 16

d) X0 = 8, a = 7, m = 16

Generate enough values in each case to complete a cycle. What inferences can be drawn?

Is maximum period achieved?

The multiplicative congruential method for generating random numbers uses the

formula:

Xn+1=(a×Xn)mod  mX_{n+1} = (a \times X_n) \mod mXn+1=(a×Xn)modm

Where:

• X0X_0X0 is the seed (starting value)

• aaa is the multiplier

• mmm is the modulus

a) X0=7X_0 = 7X0=7, a=11a = 11a=11, m=16m = 16m=16

• X0=7X_0 = 7X0=7

• X1=(11×7)mod  16=77mod  16=13X_1 = (11 \times 7) \mod 16 = 77 \mod 16 =

13X1=(11×7)mod16=77mod16=13

• X2=(11×13)mod  16=143mod  16=15X_2 = (11 \times 13) \mod 16 = 143 \mod

16 = 15X2=(11×13)mod16=143mod16=15

• X3=(11×15)mod  16=165mod  16=5X_3 = (11 \times 15) \mod 16 = 165 \mod 16

= 5X3=(11×15)mod16=165mod16=5

• X4=(11×5)mod  16=55mod  16=7X_4 = (11 \times 5) \mod 16 = 55 \mod 16 =

7X4=(11×5)mod16=55mod16=7

The sequence is: 7, 13, 15, 5, and then it repeats.

Cycle length: 4

Somaiya Vidyavihar University

 (A Constituent College of Somaiya Vidyavihar University)

CSM – Sem-VII- July – Nov 2024 Department of Computer Engineering Page

15

b) X0=8X_0 = 8X0=8, a=11a = 11a=11, m=16m = 16m=16

• X0=8X_0 = 8X0=8

• X1=(11×8)mod  16=88mod  16=8X_1 = (11 \times 8) \mod 16 = 88 \mod 16 =

8X1=(11×8)mod16=88mod16=8

The sequence is: 8, and it repeats immediately.

Cycle length: 1

c) X0=7X_0 = 7X0=7, a=7a = 7a=7, m=16m = 16m=16

• X0=7X_0 = 7X0=7

• X1=(7×7)mod  16=49mod  16=1X_1 = (7 \times 7) \mod 16 = 49 \mod 16 = 1X1

=(7×7)mod16=49mod16=1

• X2=(7×1)mod  16=7X_2 = (7 \times 1) \mod 16 = 7X2=(7×1)mod16=7

The sequence is: 7, 1, and then it repeats.

Cycle length: 2

d) X0=8X_0 = 8X0=8, a=7a = 7a=7, m=16m = 16m=16

• X0=8X_0 = 8X0=8

• X1=(7×8)mod  16=56mod  16=8X_1 = (7 \times 8) \mod 16 = 56 \mod 16 = 8X1

=(7×8)mod16=56mod16=8

The sequence is: 8, and it repeats immediately.

Cycle length: 1

Inferences:

1. Maximum Period: The maximum period for a multiplicative congruential

generator is m−1m-1m−1 (i.e., 15 in this case). The sequences above demonstrate

that not all cases achieve the maximum period:

o Case (a) achieves a cycle length of 4, which is far below the maximum

possible period.

o Case (b) and (d) have a cycle length of 1, meaning they quickly degenerate

into a constant value.

o Case (c) has a cycle length of 2, again far below the maximum.

2. Conditions for Maximum Period: For maximum period, the choice of

multiplier aaa and modulus mmm is critical. Typically, to achieve the maximum

period, the following conditions should hold:

o mmm is prime.

o The multiplier aaa should be chosen carefully to ensure good distribution.

In these examples, the choices of aaa and mmm do not lead to the maximum possible

period, leading to shorter cycles.

