
 

 

Somaiya Vidyavihar University 

 (A Constituent College of Somaiya Vidyavihar University) 
 

CSM – Sem-VII- July – Nov 2024                       Department of Computer Engineering                                     Page 

1 

                                                                                 

 

 

 

 

Title: M/M/1 and M/G/1 Queuing Model Simulation 

 

Objective: The objective of this lab experiment is to perform an analysis of the M/M/1 

and M/G/1 queue model by considering different varying parameters and their 

impact on key performance metrics. The experiment includes the calculation of 

theoretical values, simulation of the queue, and statistical analysis of the results. 

 

 

Expected Outcome of Experiment:  

CO2: Analyse and apply general principles of event scheduling algorithm & various 

statistical methods on different applications. 

 

 

Books/ Journals/ Websites referred:  

1. “Discrete-Event System Simulation” by Jerry Banks, John S. Carson II, Barry L. 

Nelson, David M. Nicol. 

2. SimPy Documentation: https://simpy.readthedocs.io/en/latest/ 

3. SciPy Documentation: https://docs.scipy.org/doc/scipy/ 
 

 

Background:  

M/M/1 Queue: 

• Description: An M/M/1 queue is a single-server queuing model where both the 

arrival and service times follow an exponential distribution (Markovian 

process), and there is one server. 

• Key Assumptions: 

o M: Memoryless (exponential inter-arrival times). 

o M: Memoryless (exponential service times). 

o 1: One server. 

• Key Performance Metrics: 

o Arrival rate (λ): Average rate at which customers arrive. 

o Service rate (μ): Average rate at which the server serves customers. 

o Utilization (ρ): ρ=λμ\rho = \frac{\lambda}{\mu}ρ=μλ, fraction of time 

the server is busy. 

o Average number of customers in the system (L): L=λμ−λL = 

\frac{\lambda}{\mu - \lambda}L=μ−λλ. 

o Average number of customers in the queue (Lq): Lq=λ2μ(μ−λ)Lq = 

\frac{\lambda^2}{\mu(\mu - \lambda)}Lq=μ(μ−λ)λ2. 

o Average time in the system (W): W=1μ−λW = \frac{1}{\mu - 

\lambda}W=μ−λ1. 

Batch: A1              Roll No.: 16010121045      

 

Experiment / Assignment / Tutorial No 5 

 
  



 

 

Somaiya Vidyavihar University 

 (A Constituent College of Somaiya Vidyavihar University) 
 

CSM – Sem-VII- July – Nov 2024                       Department of Computer Engineering                                     Page 

2 

                                                                                 

 

o Average time in the queue (Wq): Wq=λμ(μ−λ)Wq = 

\frac{\lambda}{\mu(\mu - \lambda)}Wq=μ(μ−λ)λ. 

M/G/1 Queue: 

• Description: An M/G/1 queue is similar to M/M/1 but with general distribution 

for service times (G), allowing for arbitrary service time distributions, while 

arrivals remain exponential. 

• Key Assumptions: 

o M: Exponential inter-arrival times. 

o G: General distribution for service times. 

o 1: One server. 

• Key Performance Metrics: 

o Arrival rate (λ) and Utilization (ρ): Same as M/M/1. 

o Average number of customers in the system (L): L=ρ+λVar(S)2(1−ρ)L 

= \rho + \frac{\lambda \text{Var}(S)}{2(1 - \rho)}L=ρ+2(1−ρ)λVar(S), 

where Var(S)\text{Var}(S)Var(S) is the variance of service time. 

o Average time in the system (W): W=1μ+λVar(S)2(1−ρ)W = 

\frac{1}{\mu} + \frac{\lambda \text{Var}(S)}{2(1 - \rho)}W=μ1

+2(1−ρ)λVar(S). 

o Other metrics are more complex due to the general service time 

distribution. 

 

Problem Statement 1: 

Perform analysis of the M/M/1 queue model by considering different levels of traffic 

intensity and their impact on key performance metrics. 

 

Consider the following: 

 

Traffic Intensity (ρ) Levels: 

Low Traffic Intensity: ρ=0.5 

Moderate Traffic Intensity: ρ=0.75 

High Traffic Intensity: ρ=0.95 

 

Parameters: 

Arrival rate (𝜆): Adjusted based on the chosen 𝜌 

Service rate (𝜇): Fixed at 1 customer per minute 

Simulation time: 100,000 minutes  

 

Key Performance Metrics 

Average Waiting Time (Wq) 

Average Number of Customers in the System (L) 

Server Utilization (𝜌) 

Queue Length Distribution 

Waiting Time Distribution 

 

 

Problem Statement 2: 



 

 

Somaiya Vidyavihar University 

 (A Constituent College of Somaiya Vidyavihar University) 
 

CSM – Sem-VII- July – Nov 2024                       Department of Computer Engineering                                     Page 

3 

                                                                                 

 

• Simulate an M/G/1 queue to model peak-hour traffic at a toll booth, where service 

times vary throughout the day, and analyze the toll booth’s performance metrics. 

• Vehicles arrive following a Poisson process with an average arrival rate. 

• Service times vary according to a normal distribution with different means during 

peak and off-peak hours. 

• Analyze the average waiting time, queue length, and server utilization during peak 

and off-peak hours. 

 

Key Performance Metrics: 

 

Average Waiting Time (Wq) 

Average Number of Customers in the System (L) 

Server Utilization (𝜌) 

 

Consider the following: 

1. Arrival Rate (𝜆): Average 5 vehicles per minute. 

2. Service Time Distribution: 

• Peak Hours: Mean = 0.5 minutes, Standard Deviation = 0.1 minutes. 

• Off-Peak Hours: Mean = 1.0 minutes, Standard Deviation = 0.2 minutes. 

3. Peak Hours Duration: 7:00 AM - 9:00 AM. 

4. Off-Peak Hours Duration: 9:00 AM - 5:00 PM. 

5. Simulation Time: 10 hours (7:00 AM - 5:00 PM). 

 

Simulation: 

Implement the simulation using Python and the SimPy library to model the queue 

behavior. The key steps include defining the customer arrival process, handling the 

customer service process, and collecting statistics on waiting times and queue lengths. 

 

Implementation Steps with Screen shots: 

 

M/M/1 

 

import simpy 

import random 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Simulation parameters 

SIM_TIME = 100000  # Total simulation time in minutes 

SERVICE_RATE = 1    # Service rate (μ) is fixed at 1 customer per minute 



 

 

Somaiya Vidyavihar University 

 (A Constituent College of Somaiya Vidyavihar University) 
 

CSM – Sem-VII- July – Nov 2024                       Department of Computer Engineering                                     Page 

4 

                                                                                 

 

 

# Traffic intensity levels 

TRAFFIC_INTENSITIES = { 

    'Low': 0.5, 

    'Moderate': 0.75, 

    'High': 0.9 

} 

 

class MM1Queue: 

    def __init__(self, env, service_rate, traffic_intensity): 

        self.env = env 

        self.server = simpy.Resource(env, capacity=1) 

        self.service_rate = service_rate 

        self.arrival_rate = traffic_intensity * service_rate 

        self.wait_times = [] 

        self.queue_lengths = [] 

        self.customers_in_system = [] 

        self.server_utilization_time = 0 

        self.customer_count = 0 

 

    def process_customer(self, customer_id): 

        arrival_time = self.env.now 

        with self.server.request() as request: 

            yield request 

            wait_time = self.env.now - arrival_time 

            self.wait_times.append(wait_time) 

            # Service the customer 

            service_time = random.expovariate(self.service_rate) 



 

 

Somaiya Vidyavihar University 

 (A Constituent College of Somaiya Vidyavihar University) 
 

CSM – Sem-VII- July – Nov 2024                       Department of Computer Engineering                                     Page 

5 

                                                                                 

 

            yield self.env.timeout(service_time) 

            self.server_utilization_time += service_time 

        self.customers_in_system.append(self.server.count) 

        self.customer_count += 1 

 

    def customer_arrivals(self): 

        while True: 

            inter_arrival_time = random.expovariate(self.arrival_rate) 

            yield self.env.timeout(inter_arrival_time) 

            self.env.process(self.process_customer(self.customer_count)) 

            self.queue_lengths.append(len(self.server.queue)) 

 

# Simulation function 

def run_simulation(traffic_intensity_label, traffic_intensity): 

    env = simpy.Environment() 

    mm1_queue = MM1Queue(env, SERVICE_RATE, traffic_intensity) 

    env.process(mm1_queue.customer_arrivals()) 

    env.run(until=SIM_TIME) 

 

    # Performance metrics calculations 

    avg_waiting_time = np.mean(mm1_queue.wait_times) 

    avg_customers_in_system = np.mean(mm1_queue.customers_in_system) 

    avg_queue_length = np.mean(mm1_queue.queue_lengths) 

    utilization = mm1_queue.server_utilization_time / SIM_TIME 

 

    return avg_waiting_time, avg_customers_in_system, utilization, 

mm1_queue.wait_times, mm1_queue.queue_lengths 

 



 

 

Somaiya Vidyavihar University 

 (A Constituent College of Somaiya Vidyavihar University) 
 

CSM – Sem-VII- July – Nov 2024                       Department of Computer Engineering                                     Page 

6 

                                                                                 

 

# Arrays to store metrics for plotting 

traffic_intensity_vals = [] 

waiting_times = [] 

customers_in_system_vals = [] 

utilizations = [] 

queue_lengths = [] 

wait_time_distributions = [] 

queue_length_distributions = [] 

 

# Run simulations for different traffic intensities and store metrics 

for label, intensity in TRAFFIC_INTENSITIES.items(): 

    avg_waiting_time, avg_customers_in_system, utilization, wait_times, 

queue_lengths_data = run_simulation(label, intensity) 

    traffic_intensity_vals.append(intensity) 

    waiting_times.append(avg_waiting_time) 

    customers_in_system_vals.append(avg_customers_in_system) 

    utilizations.append(utilization) 

    wait_time_distributions.append(wait_times) 

    queue_length_distributions.append(queue_lengths_data) 

 

# Create subplots for all the performance metrics 

fig, axs = plt.subplots(3, 2, figsize=(12, 12))  # Create a 3x2 grid of subplots 

 

# Plot Average Waiting Time (Wq) vs Traffic Intensity (ρ) 

axs[0, 0].plot(traffic_intensity_vals, waiting_times, marker='o', label="Avg Waiting 

Time (Wq)") 

axs[0, 0].set_xlabel('Traffic Intensity (ρ)') 

axs[0, 0].set_ylabel('Avg Waiting Time (minutes)') 



 

 

Somaiya Vidyavihar University 

 (A Constituent College of Somaiya Vidyavihar University) 
 

CSM – Sem-VII- July – Nov 2024                       Department of Computer Engineering                                     Page 

7 

                                                                                 

 

axs[0, 0].set_title('Avg Waiting Time (Wq) vs Traffic Intensity (ρ)') 

 

# Plot Average Number of Customers in System (L) vs Traffic Intensity (ρ) 

axs[0, 1].plot(traffic_intensity_vals, customers_in_system_vals, marker='o', 

label="Avg Customers in System (L)") 

axs[0, 1].set_xlabel('Traffic Intensity (ρ)') 

axs[0, 1].set_ylabel('Avg Customers in System') 

axs[0, 1].set_title('Avg Customers in System (L) vs Traffic Intensity (ρ)') 

 

# Plot Server Utilization (ρ) vs Traffic Intensity (ρ) 

axs[1, 0].plot(traffic_intensity_vals, utilizations, marker='o', label="Server 

Utilization") 

axs[1, 0].set_xlabel('Traffic Intensity (ρ)') 

axs[1, 0].set_ylabel('Server Utilization') 

axs[1, 0].set_title('Server Utilization vs Traffic Intensity (ρ)') 

 

# Plot Queue Length Distribution for different traffic intensities 

for i, label in enumerate(TRAFFIC_INTENSITIES.keys()): 

    axs[1, 1].hist(queue_length_distributions[i], bins=20, alpha=0.7, label=f"Queue 

Length ({label})") 

axs[1, 1].set_xlabel('Queue Length') 

axs[1, 1].set_ylabel('Frequency') 

axs[1, 1].set_title('Queue Length Distribution') 

axs[1, 1].legend() 

 

# Plot Waiting Time Distribution for different traffic intensities 

for i, label in enumerate(TRAFFIC_INTENSITIES.keys()): 



 

 

Somaiya Vidyavihar University 

 (A Constituent College of Somaiya Vidyavihar University) 
 

CSM – Sem-VII- July – Nov 2024                       Department of Computer Engineering                                     Page 

8 

                                                                                 

 

    axs[2, 0].hist(wait_time_distributions[i], bins=20, alpha=0.7, label=f"Waiting Time 

({label})") 

axs[2, 0].set_xlabel('Waiting Time (minutes)') 

axs[2, 0].set_ylabel('Frequency') 

axs[2, 0].set_title('Waiting Time Distribution') 

axs[2, 0].legend() 

 

# Remove the last empty plot (bottom right) 

fig.delaxes(axs[2, 1]) 

 

# Adjust layout for better readability 

plt.tight_layout() 

 

# Show the plot 

plt.show() 

 
 

 



 

 

Somaiya Vidyavihar University 

 (A Constituent College of Somaiya Vidyavihar University) 
 

CSM – Sem-VII- July – Nov 2024                       Department of Computer Engineering                                     Page 

9 

                                                                                 

 

 

M/G/1 

 

import simpy 

import random 

import numpy as np 

 

# Simulation parameters 

SIM_TIME = 100000  # Total simulation time in minutes 

PEAK_HOURS = [50000, 60000]  # Define peak hour time range (minutes) 

ARRIVAL_RATE_PEAK = 0.8  # Average arrival rate during peak hours (vehicles 

per minute) 

ARRIVAL_RATE_OFF_PEAK = 0.3  # Average arrival rate during off-peak hours 

(vehicles per minute) 

SERVICE_MEAN_PEAK = 0.7  # Average service time during peak hours 

(minutes) 

SERVICE_STD_PEAK = 0.2  # Standard deviation for service time during peak 

hours 

SERVICE_MEAN_OFF_PEAK = 0.5  # Average service time during off-peak hours 

(minutes) 

SERVICE_STD_OFF_PEAK = 0.1  # Standard deviation for service time during off-

peak hours 

 

class MG1Queue: 

    def __init__(self, env): 

        self.env = env 

        self.server = simpy.Resource(env, capacity=1) 

        self.wait_times = [] 

        self.queue_lengths = [] 



 

 

Somaiya Vidyavihar University 

 (A Constituent College of Somaiya Vidyavihar University) 
 

CSM – Sem-VII- July – Nov 2024                       Department of Computer Engineering                                     Page 

10 

                                                                                 

 

        self.server_utilization_time = 0 

        self.customer_count = 0 

 

    def process_vehicle(self, arrival_time, service_time): 

        with self.server.request() as request: 

            yield request 

            # Calculate waiting time in the queue 

            wait_time = self.env.now - arrival_time 

            self.wait_times.append(wait_time) 

             

            # Service the vehicle (Normal distribution for service times) 

            yield self.env.timeout(service_time) 

            self.server_utilization_time += service_time 

 

        self.customer_count += 1 

        self.queue_lengths.append(len(self.server.queue)) 

 

    def vehicle_arrivals(self): 

        while True: 

            current_time = self.env.now 

            if PEAK_HOURS[0] <= current_time <= PEAK_HOURS[1]: 

                inter_arrival_time = random.expovariate(ARRIVAL_RATE_PEAK) 

                service_time = max(0, random.gauss(SERVICE_MEAN_PEAK, 

SERVICE_STD_PEAK)) 

            else: 

                inter_arrival_time = random.expovariate(ARRIVAL_RATE_OFF_PEAK) 

                service_time = max(0, random.gauss(SERVICE_MEAN_OFF_PEAK, 

SERVICE_STD_OFF_PEAK)) 



 

 

Somaiya Vidyavihar University 

 (A Constituent College of Somaiya Vidyavihar University) 
 

CSM – Sem-VII- July – Nov 2024                       Department of Computer Engineering                                     Page 

11 

                                                                                 

 

             

            yield self.env.timeout(inter_arrival_time) 

            self.env.process(self.process_vehicle(self.env.now, service_time)) 

 

# Simulation function 

def run_simulation(): 

    env = simpy.Environment() 

    mg1_queue = MG1Queue(env) 

    env.process(mg1_queue.vehicle_arrivals()) 

    env.run(until=SIM_TIME) 

 

    # Performance metrics calculations 

    avg_waiting_time = np.mean(mg1_queue.wait_times) 

    avg_queue_length = np.mean(mg1_queue.queue_lengths) 

    utilization = mg1_queue.server_utilization_time / SIM_TIME 

 

    print(f"Results for Peak and Off-Peak Hours:") 

    print(f"Average Waiting Time (Wq): {avg_waiting_time:.2f} minutes") 

    print(f"Average Queue Length: {avg_queue_length:.2f} vehicles") 

    print(f"Server Utilization (ρ): {utilization:.2f}") 

 

# Run the simulation 

run_simulation() 
 

 

 



 

 

Somaiya Vidyavihar University 

 (A Constituent College of Somaiya Vidyavihar University) 
 

CSM – Sem-VII- July – Nov 2024                       Department of Computer Engineering                                     Page 

12 

                                                                                 

 

 

 

Conclusion:  

In this experiment, we performed an in-depth analysis of the M/M/1 and M/G/1 queue 

models by varying key parameters such as arrival rate (λ), service rate (μ), and service 

time distribution. The theoretical values calculated for metrics like utilization, average 

queue length, and average time in the system were compared with the results obtained 

through simulation. 

Post lab Questions: 

 

Network of Queues (M/M/1 and M/M/3) 

 

Simulate a network of interconnected queues (M/M/1 and M/M/3) where customers pass 

through multiple service stations with different service rates. 

 

Consider the following Scenario: 

 

• Customers first arrive at a check-in counter (M/M/1). 

• After check-in, customers move to a service desk (M/M/1). 

• After the service desk, customers may visit one of several specialized service 

counters (M/M/3). 

• Each queue has different arrival and service rates. 

• Analyze the overall system performance, including average waiting time, queue 

length, and server utilization at each station. 



 

 

Somaiya Vidyavihar University 

 (A Constituent College of Somaiya Vidyavihar University) 
 

CSM – Sem-VII- July – Nov 2024                       Department of Computer Engineering                                     Page 

13 

                                                                                 

 

Ans) 

 

import simpy 

import random 

import numpy as np 

 

# Simulation parameters 

SIM_TIME = 50000  # Total simulation time in minutes 

 

# Arrival and service rates for each station 

ARRIVAL_RATE_CHECKIN = 1/2  # Customers arrive every 2 minutes on average 

SERVICE_RATE_CHECKIN = 1/3  # Check-in takes on average 3 minutes (M/M/1) 

 

SERVICE_RATE_SERVICE_DESK = 1/4  # Service desk takes on average 4 

minutes (M/M/1) 

 

SERVICE_RATE_SPECIALIZED = 1/5  # Specialized service takes on average 5 

minutes (M/M/3) 

SPECIALIZED_SERVERS = 3  # M/M/3 configuration 

 

class QueueSystem: 

    def __init__(self, env, servers, service_rate, label): 

        self.env = env 

        self.server = simpy.Resource(env, capacity=servers) 

        self.service_rate = service_rate 

        self.label = label 

        self.wait_times = [] 

        self.queue_lengths = [] 

        self.server_utilization_time = 0 



 

 

Somaiya Vidyavihar University 

 (A Constituent College of Somaiya Vidyavihar University) 
 

CSM – Sem-VII- July – Nov 2024                       Department of Computer Engineering                                     Page 

14 

                                                                                 

 

        self.customer_count = 0 

 

    def process_customer(self, arrival_time): 

        with self.server.request() as request: 

            yield request 

            wait_time = self.env.now - arrival_time 

            self.wait_times.append(wait_time) 

            # Service the customer 

            service_time = random.expovariate(self.service_rate) 

            yield self.env.timeout(service_time) 

            self.server_utilization_time += service_time 

 

        self.customer_count += 1 

        self.queue_lengths.append(len(self.server.queue)) 

 

# Simulate the check-in counter 

class CheckInCounter(QueueSystem): 

    def __init__(self, env): 

        super().__init__(env, 1, SERVICE_RATE_CHECKIN, "Check-in Counter") 

 

# Simulate the service desk 

class ServiceDesk(QueueSystem): 

    def __init__(self, env): 

        super().__init__(env, 1, SERVICE_RATE_SERVICE_DESK, "Service Desk") 

 

# Simulate the specialized service counters (M/M/3) 

class SpecializedServiceCounter(QueueSystem): 

    def __init__(self, env): 



 

 

Somaiya Vidyavihar University 

 (A Constituent College of Somaiya Vidyavihar University) 
 

CSM – Sem-VII- July – Nov 2024                       Department of Computer Engineering                                     Page 

15 

                                                                                 

 

        super().__init__(env, SPECIALIZED_SERVERS, 

SERVICE_RATE_SPECIALIZED, "Specialized Counter") 

 

# Simulation function 

def run_simulation(): 

    env = simpy.Environment() 

 

    check_in = CheckInCounter(env) 

    service_desk = ServiceDesk(env) 

    specialized_counter = SpecializedServiceCounter(env) 

 

    def customer_arrival(env): 

        while True: 

            # Customer arrives at the check-in counter 

            yield env.timeout(random.expovariate(ARRIVAL_RATE_CHECKIN)) 

            env.process(check_in.process_customer(env.now)) 

             

            # After check-in, customer goes to service desk 

            yield env.process(service_desk.process_customer(env.now)) 

             

            # After the service desk, customer goes to one of the specialized service 

counters 

            yield env.process(specialized_counter.process_customer(env.now)) 

 

    # Start the customer arrival process 

    env.process(customer_arrival(env)) 

    env.run(until=SIM_TIME) 

 



 

 

Somaiya Vidyavihar University 

 (A Constituent College of Somaiya Vidyavihar University) 
 

CSM – Sem-VII- July – Nov 2024                       Department of Computer Engineering                                     Page 

16 

                                                                                 

 

    # Performance metrics calculations 

    def print_metrics(queue_system): 

        avg_waiting_time = np.mean(queue_system.wait_times) 

        avg_queue_length = np.mean(queue_system.queue_lengths) 

        utilization = queue_system.server_utilization_time / (SIM_TIME * 

queue_system.server.capacity) 

 

        print(f"Results for {queue_system.label}:") 

        print(f"Average Waiting Time (Wq): {avg_waiting_time:.2f} minutes") 

        print(f"Average Queue Length: {avg_queue_length:.2f} customers") 

        print(f"Server Utilization (ρ): {utilization:.2f}\n") 

 

    # Print metrics for each station 

    print_metrics(check_in) 

    print_metrics(service_desk) 

    print_metrics(specialized_counter) 

 

# Run the simulation 

run_simulation() 
 



 

 

Somaiya Vidyavihar University 

 (A Constituent College of Somaiya Vidyavihar University) 
 

CSM – Sem-VII- July – Nov 2024                       Department of Computer Engineering                                     Page 

17 

                                                                                 

 

 


