

SOMAIYA VIDYAVIHAR UNIVERSITY

K. J. Somaiya College of Engineering, Mumbai -77

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering (CSM/2024-25) Page 1

Experiment: 4

Title: Implementation of Event Scheduling Algorithm for Dump Truck Problem

Problem Statement: Dump truck is used to haul load from the entrance of a small mine to

the railroad. Each truck is loaded by one of two loaders. After a loading, truck immediately

moves to the scale, to be weighed as soon as possible. Both the loaders and the scale have

a first-come-first-served waiting line (queue) for trucks. Travel time from a loader to the

scale is considered negligible. After being weighed, a truck begins a travel time (during

which the truck unloads) and then afterwards returns to the loader queue.

The distribution of loading time, weighing time and travel time are given along with random

digits assigned. Simulate the dump truck problem using C/C++/Java.

Expected Outcome of Experiment:

Index Outcome

CO2 Analyse and apply general principles of event scheduling algorithm & various

statistical methods on different applications.

Books/ Journals/ Websites referred:

1. Jerry Banks, John Carson, Barry Nelson, and David M. Nicol, “Discrete Event System

Simulation”; Fifth Edition, Prentice-Hall.

2. Averill M Law, “System Modeling & Analysis”; 4th Edition TMH.

3. Banks C M, Sokolowski J A, “Principles of Modeling and Simulation”, Wiley

Pre Lab/ Prior Concepts:

Theory:

To estimate the loader and scale utilization (% of time busy)

Concept in Discrete event simulation:

1. System: A collection of entities (e.g. peoples & machines) that interact together over

Batch: A1 Roll No.: 16010121045

Experiment / Assignment / Tutorial No: 4

SOMAIYA VIDYAVIHAR UNIVERSITY

K. J. Somaiya College of Engineering, Mumbai -77

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering (CSM/2024-25) Page 2

time to accomplish one or more goals.

2. Model: An abstract representation of a system, usually containing structures, logical

or mathematical relationships that describe a system in terms of state, entities and their

attributes, sets, process, events.

3. System state: A collection of variables that contain all the information necessary to

describe the system at any time.

4. Entity: Any objector component in the system that requires explicit representation in

the model.

5. Attributes: The properties of a given entity.

6. List: A collection of associated entities (permanent / temporary) associated entities,

ordered in some logical fashion.

7. Event: An instantaneous occurrence that changes the state of the system.

8. Event notice: A record of an event to occur at the current / future time, along with any

associated data necessary to execute the event.

9. Activity: Duration of time of specified length, which is known when it begins.

10. Delay: A duration of time specified length which is not known until it ends.

11. Clock: A variable representing simulated time.

World View:

Even scheduling approach: When using the event scheduling approach, a simulation analyst

concentrates on events & their effect on system state. Loading & weighing are two events

which affect the system at loader & weighing queue. Based on the queue is busy or idle,

imminent event is loaded.

Process Interaction approach: It describes the lifespan of activities. The analyst defines the

simulation model in terms of entities or objects and their life cycle as they flow through the

system, demanding resource and queuing to wait for resources. This life cycle consists of

various events & activities. It is based on fixed time advance. Disadvantage of it is that we

need to scan activity again and again.

Activity scanning approach: It is also known as three phase approach. It considers the

activities of duration zero time units. Based on this, activities are categorized as B activities:

It includes activities which are bound to occur, all primary events and unconditional

activities. C activities: It includes activities or events that are conditional upon certain

conditions being true.

In three phase approach, the simulation has

Phase A: Remove imminent event from the FEL and advance the clock to its event time.

Remove form FEL any other events that have the same event time.

Phase B: Execute all B-type events that were removed from FEL.

Phase C: Scan the condition that triggers each C type activity and rescan until no additional

C- type activities can begin & no events occur.

Conceptual Model:

SOMAIYA VIDYAVIHAR UNIVERSITY

K. J. Somaiya College of Engineering, Mumbai -77

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering (CSM/2024-25) Page 3

1. System states: [LQ(t), L(t), WQ(t), W(t)]

Where, LQ(t) = No. of trucks in loader queue

L(t) = No. of trucks (0,1 or 2) being loaded

WQ(t) = No. of trucks in weigh queue

W(t) = No. of trucks (0 or 1) being weighed

All at simulation time t.

2. Entities: Six dump trucks [DT1,DT2, … ,DT6]

3. Lists: Loading queue - All trucks waiting to begin loading

Weighing queue – All trucks waiting to be weighed

4. Events: An instantaneous occurrence that changes the state of the system.

5. Event notices: (ALQ, t, DTi) Dump truck i arrives at loader queue ALQ at time t

(EL, t, DTi) Dump truck i end loading EL at time t

(EW, t, DTi) Dump truck i end weighing EW at time t

6. Activities: Loading time, weighing time & travel time

7. Delay: Time required at loader queue & scale.

Random Numbers:

Random numbers used in this simulation are for loading time & weighing time of dump

truck.

Algorithm / Activity Diagram: (Simulation Approach):

Dump Truck Problem :

import random

class Truck:

 def __init__(self,truck_id):

 self.truck_id = truck_id

 self.status = "Init"

 self.time_left = 0

 def get_load_time(self):

 rand = random.random()

 if 0 <= rand <= 0.3:

SOMAIYA VIDYAVIHAR UNIVERSITY

K. J. Somaiya College of Engineering, Mumbai -77

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering (CSM/2024-25) Page 4

 load_time = 5

 elif 0.3 < rand <= 0.8:

 load_time = 10

 else:

 load_time = 15

 return load_time

 def get_weigh_time(self):

 rand = random.random()

 if 0 <= rand <= 0.7:

 weigh_time = 12

 else:

 weigh_time = 16

 return weigh_time

 def get_travel_time(self):

 rand = random.random()

 if 0 <= rand <= 0.4:

 travel_time = 40

 elif 0.4 < rand <= 0.7:

 travel_time = 60

 elif 0.7 < rand <= 0.9:

 travel_time = 80

 else:

 travel_time = 100

SOMAIYA VIDYAVIHAR UNIVERSITY

K. J. Somaiya College of Engineering, Mumbai -77

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering (CSM/2024-25) Page 5

 return travel_time

def truckParser(Trucks):

 new_list = []

 for truck in Trucks:

 new_list.append(truck.truck_id)

 return new_list

def print_stuff(loader_queue,in_loader,weighing_queue,in_weigh,traveling_trucks):

 print("Loader Queue: " + str(truckParser(loader_queue)))

 print("In Loader: " + str(truckParser(in_loader)))

 print("Weighing_queue: " + str(truckParser(weighing_queue)))

 print("In weighing: " + str(truckParser(in_weigh)))

 print("Travelling: " + str(truckParser(traveling_trucks)))

def simulate_trucks():

 trucks = [Truck(i) for i in range(1, 7)]

 loader_queue = trucks[:]

 in_loader = [] # Only 2 trucks at a time

 weighing_queue = []

 in_weigh = [] # Only 1 truck at a time

 traveling_trucks = []

 Time = 0

 while Time < 100:

SOMAIYA VIDYAVIHAR UNIVERSITY

K. J. Somaiya College of Engineering, Mumbai -77

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering (CSM/2024-25) Page 6

 print(f"Time: {Time}")

 # Start Loading

 for truck in loader_queue:

 if(len(in_loader)<2):

 if truck.status == "Init" or truck.status == "Returning":

 in_loader.append(truck)

 loader_queue.remove(truck)

 truck.status = "Loading"

 truck.time_left = truck.get_load_time()

 print(f"Truck {truck.truck_id} starts loading for {truck.time_left} time units.")

 # Process loading

 for truck in in_loader[:]:

 if truck.status == "Loading":

 truck.time_left -= 1

 if truck.time_left == 0:

 truck.status = "WaitingForWeighing"

 in_loader.remove(truck)

 weighing_queue.append(truck)

 print(f"Truck {truck.truck_id} finished loading and moves to weighing

queue.")

 # Start Weighinh

 for truck in weighing_queue[:]:

 if(len(in_weigh)==0):

 if truck.status == "WaitingForWeighing":

 in_weigh.append(truck)

SOMAIYA VIDYAVIHAR UNIVERSITY

K. J. Somaiya College of Engineering, Mumbai -77

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering (CSM/2024-25) Page 7

 weighing_queue.remove(truck)

 truck.status = "Weighing"

 truck.time_left = truck.get_weigh_time()

 print(f"Truck {truck.truck_id} starts weighing for {truck.time_left} time

units.")

 # Process weighing

 for truck in in_weigh[:]:

 if truck.status == "Weighing":

 truck.time_left -= 1

 if truck.time_left == 0:

 truck.status = "Traveling"

 in_weigh.remove(truck)

 traveling_trucks.append(truck)

 truck.time_left = truck.get_travel_time()

 print(f"Truck {truck.truck_id} finished weighing and starts traveling for

{truck.time_left} time units.")

 # Process traveling trucks

 for truck in traveling_trucks[:]:

 if truck.status == "Traveling":

 truck.time_left -= 1

 if truck.time_left == 0:

 truck.status = "Returning"

 traveling_trucks.remove(truck)

 loader_queue.append(truck)

 print(f"Truck {truck.truck_id} finished traveling and returns to loader

queue.")

SOMAIYA VIDYAVIHAR UNIVERSITY

K. J. Somaiya College of Engineering, Mumbai -77

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering (CSM/2024-25) Page 8

 Time += 1

 print_stuff(loader_queue,in_loader,weighing_queue,in_weigh,traveling_trucks)

simulate_trucks()

SOMAIYA VIDYAVIHAR UNIVERSITY

K. J. Somaiya College of Engineering, Mumbai -77

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering (CSM/2024-25) Page 9

SOMAIYA VIDYAVIHAR UNIVERSITY

K. J. Somaiya College of Engineering, Mumbai -77

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering (CSM/2024-25) Page 10

The Event scheduling algorithm:

The sequence of actions which a simulation language must perform to advance the clock

and build a new system snapshot is called Event scheduling algorithm / Time advance

algorithm.

STEP 1. Remove the event notice for the imminent event from FEL

STEP 2. Advance clock to imminent event time.

STEP 3. Execute imminent event, update system state, change entity attribute and set

membership as needed

STEP 4. Generate future events and place their event notices on FEL, ranked by event time.

STEP 5. Update cumulative statistics and counters.

Conclusion:

The implementation of the event scheduling algorithm for the dump truck problem

effectively models the operation of a small mine, where dump trucks are loaded, weighed,

and then proceed to unload. By simulating this system using event scheduling, we can

observe the impact of various factors such as loading times, weighing times, and queue

lengths on the overall efficiency of the process.

The conceptual model, which includes system states, entities, and events, allows for a

detailed analysis of the mine's operations. The event scheduling approach, particularly

focusing on key events such as loading and weighing, provides an efficient way to simulate

and analyze the system's behavior over time. This approach enables the identification of

bottlenecks, such as excessive waiting times in queues, and helps in evaluating the

performance of the system under different conditions.

Furthermore, the use of random numbers for loading and weighing times introduces

variability into the simulation, reflecting the real-world uncertainty and variability in these

processes. The results of the simulation can be used to optimize the operation of the mine,

potentially leading to reduced waiting times, increased throughput, and improved overall

efficiency.

In summary, the event scheduling algorithm serves as a powerful tool for analyzing and

optimizing complex systems like the dump truck operation in a mine, providing valuable

insights that can guide decision-making and operational improvements.

SOMAIYA VIDYAVIHAR UNIVERSITY

K. J. Somaiya College of Engineering, Mumbai -77

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering (CSM/2024-25) Page 11

Post Lab Questions:

Using the event scheduling approach, do the manual simulation of Able Baker call center

problem.

import random

import heapq

Time between calls (in minutes) from Table 10

time_between_calls = [1, 2, 3, 4]

Service times for Able (in minutes) from Table 11

able_service_times = [2, 3, 4]

Service times for Baker (in minutes) from Table 12

baker_service_times = [3, 4, 5]

Initialize the event list (FEL) as a priority queue

event_list = []

Statistics

total_wait_time = 0

total_idle_time_able = 0

total_idle_time_baker = 0

calls_served_by_able = 0

calls_served_by_baker = 0

Simulation clock

current_time = 0

SOMAIYA VIDYAVIHAR UNIVERSITY

K. J. Somaiya College of Engineering, Mumbai -77

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering (CSM/2024-25) Page 12

Able and Baker availability

able_available = True

baker_available = True

Generate the first call event

next_call_time = random.choice(time_between_calls)

heapq.heappush(event_list, (next_call_time, 'call'))

Simulation for the first 100 calls

for _ in range(100):

 # Get the imminent event

 event_time, event_type = heapq.heappop(event_list)

 # Advance the clock to the time of the imminent event

 current_time = event_time

 if event_type == 'call':

 if able_available:

 # Assign the call to Able

 service_time = random.choice(able_service_times)

 calls_served_by_able += 1

 able_available = False

 heapq.heappush(event_list, (current_time + service_time, 'able_done'))

 elif baker_available:

 # Assign the call to Baker

 service_time = random.choice(baker_service_times)

 calls_served_by_baker += 1

 baker_available = False

SOMAIYA VIDYAVIHAR UNIVERSITY

K. J. Somaiya College of Engineering, Mumbai -77

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering (CSM/2024-25) Page 13

 heapq.heappush(event_list, (current_time + service_time, 'baker_done'))

 else:

 # If both are busy, increment wait time (not storing it separately here)

 pass

 # Schedule the next call

 next_call_time = current_time + random.choice(time_between_calls)

 heapq.heappush(event_list, (next_call_time, 'call'))

 elif event_type == 'able_done':

 able_available = True

 if not event_list: # If no more events are scheduled

 total_idle_time_able += 1

 elif event_type == 'baker_done':

 baker_available = True

 if not event_list: # If no more events are scheduled

 total_idle_time_baker += 1

Calculate and display statistics

print("Total Calls Served by Able:", calls_served_by_able)

print("Total Calls Served by Baker:", calls_served_by_baker)

print("Total Idle Time of Able:", total_idle_time_able)

print("Total Idle Time of Baker:", total_idle_time_baker)

SOMAIYA VIDYAVIHAR UNIVERSITY

K. J. Somaiya College of Engineering, Mumbai -77

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering (CSM/2024-25) Page 14

