

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Batch: CSM-1 Roll No.: 16010121045

Experiment / Assignment / Tutorial No: 1

Experiment: 1

Title: Simulation of Multi Server System: Able – Baker Carhop Problem.

Problem Statement: Consider a drive in restaurant where carhops take order and bring food to the cars. Cars arrive in manner as shown:

Time between	1	2	3	4
Arrival(minutes)				
Probability	0.25	0.4	0.2	0.15

There are 2 carhops Able & Baker. Able is better to do the job and works a bit faster than Baker. Their service distribution is as follows:

Service	2	3	4	5
Time(minutes)				
Probability	0.3	0.28	0.25	0.17

Service Distribution time of Baker:

Service	3	4	5	6
time(minutes)				
Probability	0.35	0.25	0.2	0.2

Able gets the customer if both carhops are idle. The problem is to find how well the current arrangement is working.

Expected Outcome of Experiment:

Index	Outcome

K. J. Somaiya College of Engineering, Mumbai -77 Constituent College of Somaiya Vidyayibar University

(A Constituent College of Somaiya Vidyavihar University)

CO1	Understand the concepts of discrete event simulation and its importance in
	business, science, engineering, industry and other services.

Books/ Journals/ Websites referred:

- 1. Jerry Banks, John Carson, Barry Nelson, and David M. Nicol, "Discrete Event System Simulation,; Fifth Edition, Prentice-Hall.
- 2. Averill M Law, "System Modeling & Analysis"; 4th Edition TMH.
- 3. Banks C M, Sokolowski J A, "Principles of Modeling and Simulation", Wiley

Pre Lab/ Prior Concepts:

Theory:

Conceptual Model:

- I. Discrete event model of system used for multichannel queuing. E.g. of Able & baker problem.
- II. This problem is simulated using an event scheduling simulation.
- III. A simulation table is used to record the excessive system snapshot as time proceeds.
- IV. The simulation requires mainly an activity table representing a service time distribution of able & baker & inters arrival of customers.
- V.Activity duration is specified by a modeller.

Characteristics of System:

- I) Calling Population: Infinite in nature.
- II) System capacity: Infinite.
- III) Nature of Arrival: Random arrival nature.
- IV) Service Mechanism: At a time maximum two customers can be served one by Able & other by Baker. If able & baker both are busy, the customer has to wait. If both servers are free, priority goes to Able.
- V) Queuing Discipline: Customers are chosen in FIFO manners.

System State:

System state for Able or Baker indicating Able being Idle or Busy at given instant.

Entities:

Neither the customers nor the server needs to be explicitly represented except in

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

terms of state variable unless customer averages are desired.

Events:

- I. Arrival Event
- II. Service Completion by Able
- III. Service completion by Baker.

Delay:

A customer waits in queue until Able or Baker becomes free.

Use of Random Numbers:

- I. To generate random nos. in simulation packages, RAND () of function is used.
- II. In Able & Baker problem random nos. are used for arranging inter arrival timer & service required for customers.

Real time example:

- I. Public Telephone Booth with Two Telephones
- II. Customer is chosen in FIFO manner.

Result: (Performance Measures):

Average Waiting Time = **1.35** (Total time customers wait in queue) / (Total no. of Customers)

Prob. of Customers waiting = **0.24** (No. of Customers who waits) / (Total no. of Customers)

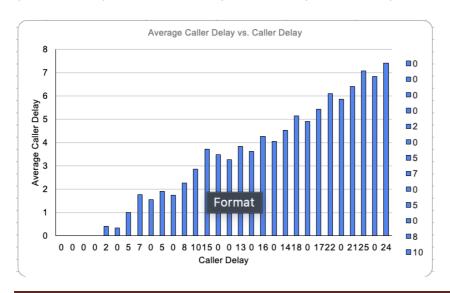
Prob. of Idle Server = **0.457** (Total Idle Time of Server) / (Total runtime of simulation)

Average Service Time = **3.61** (Total Service Time) / (Total no. of Customers)

Average Time between Arrival = **2.34** (Total Time between arrivals) / (No. of arrivals)

Average Waiting Time of Those Who Wait = **5.625** (Total Time Customer waits in system) / (Total no. of Customers)

Average Time Customers Spends in System = **4.96** (Total Time Customer spends in system) / (Total no. of Customers)


K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Conclusion: Successfully simulated the Able Baker Experiment with 100 samples.

Post Lab Questions:

Plot the frequency of caller delay & average caller delay for 30 trials.

	Post Lab				
	Cumilative Caller				
Trial Number	Caller Delay	Delay	Delay		
1	0	0	0		
2	0	0	0		
3	0	0	0		
4	0	0	0		
5	2	2	0.4		
6	0	2	0.333333333		
7	5	7	1		
8	7	14	1.75		
9	0	14	1.55555556		
10	5	19	1.9		
11	0	19	1.727272727		
12	8	27	2.25		
13	10	37	2.846153846		
14	15	52	3.714285714		
15	0	52	3.466666667		
16	0	52	3.25		
17	13	65	3.823529412		
18	0	65	3.611111111		
19	16	81	4.263157895		
20	0	81	4.05		
21	14	95	4.523809524		
22	18	113	5.136363636		
23	0	113	4.913043478		
24	17	130	5.416666667		
25	22	152	6.08		
26	0	152	5.846153846		
27	21	173	6.407407407		
28	25	198	7.071428571		
29	0	198	6.827586207		
30	24	222	7.4		

