
	[bookmark: _gjdgxs][image: A picture containing drawing

Description automatically generated]
	K. J. Somaiya College of Engineering, Mumbai-77
(A Constituent College of Somaiya Vidyavihar University)
Department of Science and Humanities
	[image: A close up of a sign

Description automatically generated]

Batch: A2 Roll No.: 16010121045

Experiment / assignment / tutorial No.

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date	

	TITLE: Class, Object , Types of methods and Constructor

AIM: Write a program to create StudentInfo class .Calculate the percentage scored
 by the student

__
Expected OUTCOME of Experiment: Apply Object oriented programming concepts in Python
__
Resource Needed: Python IDE
__
Theory:
Python is an object oriented programming language. Almost everything in Python is an object, with its properties and methods .A Class is like an object constructor, or a "blueprint" for creating objects. Objects are an encapsulation of variables and functions into a single entity. Objects get their variables and functions from classes. Classes are essentially a template to create your objects.

Example :
class MyClass:
 variable = "hello"
 def function(self):
 print("This is a message inside the class.")
myobjectx = MyClass()

The self-parameter is a reference to the current instance of the class, and is used to access variables that belong to the class. It does not have to be named self you can call it whatever you like, but it has to be the first parameter of any function in the class.

[image:]
Public Members of a class (data and methods) are accessible from outside the class.
Private members are inaccessible from outside the class. Private members by convention start with an underscore, as _name, _age, _salary.

There are three types of methods in Python: instance methods, static methods, and class methods.
Instance methods:
Instance methods are the most common type of methods in Python classes. These are so called because they can access unique data of their instance. Instance methods must have self as a parameter. Inside any instance method, you can use self to access any data or methods that may reside in your class. You won’t be able to access them without going through self.
Static methods:
 Static methods are methods that are related to a class in some way, but don’t need to access any class-specific data. You don’t have to use self, and you don’t even need to instantiate an instance
Class methods: They can’t access specific instance data, but they can call other static methods. Class methods don’t need self as an argument, but they do need a parameter called cls. This stands for class, and like self, gets automatically passed in by Python. Class methods are created using the @classmethod decorator.

Example:

class MyClass:
 def method(self):
 return 'instance method called', self

 @classmethod
 def classmethod(cls):
 return 'class method called', cls

 @staticmethod
 def staticmethod():
 return 'static method called

Constructors in Python
Constructors are generally used for instantiating an object. The task of constructors is to initialize (assign values) to the data members of the class when an object of class is created. In Python the __init__() method is called the constructor and is always called when an object is created.
Syntax of constructor declaration:

def __init__(self):
 # body of the constructor

Types of constructors:

• Default constructor: The default constructor is simple constructor which doesn’t accept any arguments. It’s definition has only one argument which is a reference to the instance being constructed.
• Parameterized constructor: constructor with parameters is known as parameterized constructor. The parameterized constructor take its first argument as a reference to the instance being constructed known as self and the rest of the arguments are provided by the programmer.

Python built-in function
The built-in functions defined in the class are described in the following table.
	SN
	Function
	Description

	1
	getattr(obj,name,default)
	It is used to access the attribute of the object.

	2
	setattr(obj, name,value)
	It is used to set a particular value to the specific attribute of an object.

	3
	delattr(obj, name)
	It is used to delete a specific attribute.

	4
	hasattr(obj, name)
	It returns true if the object contains some specific attribute.

Problem Definition:
1. For given program find output
	Sr.No
	Program
	Output

	1
	class MyClass:
 x = 5

p1 = MyClass()
print(p1.x)
	5

	2
	class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

p1 = Person("John", 36)

print(p1.name)
print(p1.age)
	John
36

	3
	class Student:
 # Constructor - non parameterized
 def __init__(self):
 print("This is non parametrized constructor")
 def show(self,name):
 print("Hello",name)
student = Student()
student.show("John")
	This is non-parameterized
Constructor
Hello John

	4
	class Student:
 roll_num = 101
 name = "Joseph"

 def display(self):
 print(self.roll_num,self.name)

st = Student()
st.display()
	101
Joseph

	5
	class Student:
 # Constructor - parameterized
 def __init__(self, name):
 print("This is parametrized constructor")
 self.name = name
 def show(self):
 print("Hello",self.name)
student = Student("John")
student.show()
	This is parameterized
Constructor
Hello John

2. Write a program to accept Roll Number, Marks Obtained in four subjects, calculate total Marks and percentage scored by the student. Display the roll number, marks obtained, total marks and the percentage scored by the student. Use getter-setter methods.

Books/ Journals/ Websites referred: 	

1. Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford University Press, First Edition 2017, India
2. Sheetal Taneja and Naveen Kumar, Python Programming: A modular Approach, Pearson India, Second Edition 2018,India

Implementation details:

class Student:
 # Setter funnctions
 def set_name(self,name):
 self.name=name
 def set_li(self,li):
 self.li=list(li)
 # Getter functions
 def get_name(self):
 return self.name
 def get_total(self):
 return sum(self.li)
 def get_percent(self):
 return self.get_total()/4

n=int(input("Enter the number of Students: "))
slist=[] #Creating a list to store student objects
for i in range(0,n):
 name=input("Enter name: ")
 li=list(map(int,input("Enter marks: ").split()))
 slist.append(Student())
 slist[i].set_name(name)
 slist[i].set_li(li)
for i in range(0,n):
 print(slist[i].get_name(),"\t\t",slist[i].get_total(),"\t\t",slist[i].get_percent())

Output(s):

[image: Text, chat or text message

Description automatically generated]

[image: A screenshot of a computer

Description automatically generated with medium confidence]

Conclusion:

Object oriented programming concepts were used and in Python experiment. Learnt to use getter and setter functions and successfully implemented the given program.

Post Lab Questions:

1. Write a program that has a class ‘store’ which keeps a record of code and price of each product. Display a menu of all products to the user and prompt them to enter the quantity of each item required. Generate a bill and display the total amount.

class store:
 def __init__(self):
 self.price=[50,200,300,40]
 def menu(self,names):
 print("Item Name\t\t\tPrice")
 for i in range(4):
 print(names[i],"\t\t\t",self.price[i])
 def total(self,li):
 amount=0
 for i in range(4):
 amount+=li[i]*self.price[i]
 return amount
obj=store()
names=["Tandoor Roti","Veg Sabji","Non Veg Sabji","Cold Drink"]
obj.menu(names)
counter=[]
for i in range(4):
 print("Enter the quantity for",names[i],": ")
 counter.append(int(input()))
print("The total bill amount is Rs.",obj.total(counter))

2. What is the use of getter and setter methods?

Getters and setters, also known as mutator methods; are used in many object-oriented programming languages to ensure and implement the principle of data encapsulation.
Encapsulation means the wrapping of a particular type of data under the same name. It is seen as the bundling of data with the methods that operate on these data. These methods are of course the getter for retrieving the data and the setter for changing the data.

Date: _____________ Signature of faculty in-charge

Page No 	 PP Sem II/Jan – June 2022
image1.png

image2.png

image3.png

image4.jpg

image5.png

