Quantum Mechanics



de Broglie relation from relativity
Popular expressions of relativity: m, is the mass at rest, m in motion

2
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Application to a photon (my=0) FE = hV

E =pc — pc = hv
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De Broglie Hypothesis

We have seen that radiation has dual behavior:
— Wave-like and particle-like.

In 1924 de Broglie suggested that the same is true E
for matter. pe I
Specifically, he proposed that frequency and

wavelength can be associated with an electron’s 5 - /_1
energy and momentum. o P

— Here, A is the de Broglie wavelength.
Recall for photon:
he

EF=pc=hv=—
3 A

de Broglie relations hold for photon.

Consider a particle with kinetic energy K. Its
momentum is found from

2
K= p=+2mK

2m

Its wavelength is then
. h h

A =— =

p - N 2mK




de Broglie Wavelength in terms of V

Consider an electron of mass m and charge 4 accelerated througha

potential difference of V volts

KE of the electrons is equal to the energy of the electron accelerated at

a potentialof Vvolts | " . R
Emv =9V ->mv =2maV — p- =2maV

p=mv= J2mal g /

v

p 2maV

de Broglie wavelength of electron 4= ¢
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Calculate the wavelength of a electron and a bullet of mass 10 gram
moving at 100 m/s.
Comment on the answers

For electron
Ae = h/mv = 6.63x1034 /(9.1x10-31) (100)

Ae =7.28 x10® m

measurable

for bullet
A =h/mv =6.6x1034/ (0.01)(100)

This is immeasureably small

=6.63 x1034 m

For ordinary “everyday objects,”
we don’t experience that

MATTER CAN BEHAVE AS A WAVE



But, what about small particles
? =

Compute the wavelength of an electron Gamm,
(m = 9.1x10-3" kg moving at 1x107 [m/s].

A=h/mv
= 6.6x10734 [J s]/(9.1x10-31 [kg])(1x107 [m/s])
=7.3x10" [m].
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2. Calculate de Broglie wavelength a
neutron having energy of 1MeV.

3. Calculate de Broglie wavelength a proton
accelerated through a potential difference of 1KV.



DE BROGLIE'S EXPLANATION OF
BOHR'S SECOND POSTULATE OF QUANTIZATION
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Davisson — Germer experiment




Davisson and Germer Experiment:

A beam of electrons emitted by the
electron gun is made to fall on
Nickel crystal cut along cubical axis
at a particular angle.

The scattered beam of electrons is
received by the detector which can
be rotated at any angle.

The energy of the incident beam of
electrons can be varied by changing
the applied voitage to the electron
gun.

Intensity of scattered beam of
electrons is found to be maximum
when angle of scattering Is 50° and
the accelerating potential is 54 V.

0+50°+86=180° fle. 6=65°
For Ni crystal, lattice spacing
d=091A

For first principal maximum, n= 1

Electron diffraction is similar
to X-ray diffraction.

*» Bragg's equation 2dsin® = nA gives




For Nickel crystal

d=091A° 0=65°n=1
2x 091 xsin 65=1.65 A°
A = 1.65A°

Hence, the De-broglie wavelength as obtained from the experiment is A = 1.65A°

Now we use De-broglie for theoretical calculation of A as

h h
A = P B :/Zmev

6.64x 1074
2%9.1x10°" x1.6x10™ x54

A = 1.66A”

Hence the De-broglie wavelength of electron waves determined by Davisson and Germer
experiment and those calculated from De-broglie hypothesis are found to be in close
agreement. Thus the result of Davisson and Germer confirms the De-broglie concept of
matter waves without any doubts.



Phase Velocity (Velocity of Matter wave)

phase \elocity

V, = Av
for a massive particle for a massless particle
h me® nE 1pc
vV, = =C—>¢C Vp=—7=—"—-=¢C
mv h V oh pl

phase velocity does not describe particle motion



Properties of Matter Waves

» Associated with moving particles.
» Wavelength inversely proportional to mass and velocity.
» Independent of nature of charge.
» Neither electromagnetic nor mechanical waves.
» Associated with probability of finding particle.
> Phase velocity is not significant for the matter waves.
» A velocity called group velocity is significant for the matter waves
» Quantity associated is called wave function
Y(x,y,z,t) =A+iB
> |¥|? isreal and called probability of finding the particle.



Wave functions

Waves of what ?

“normal” waves
are a disturbance in space
carry energy from one place to another

often (but not always) will (approximately) obey the classical
wave equation

“Matter” waves

disturbance is the wave function ¥(x, vy, z, t)
probability amplitude ¥
probability density p(x, y, z, t ) =|¥|?



Group Velocity
¥, = Acos(et — kx)

P, = Acos[(a) +Aw ) — (k+ Ak)x]

W = 2Acos 2o+ Ao - @+ Ak K fos_[(a@ ) - (AKK]

Y=V + V¥,

with Aw << w,<< Kk
VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA
A Ak YV o
b= 2Acosr—w t—— x1 cos[a)t - kx] TSIV TITIVIVIVES
2 27
phase velocity = wave \elocity of carrier: v = —
: - Aw
group velocity = wave velocity of envelope: v, = .
a

for more than two wave contiributions V, = %



Group Velocity

®=2ny = 2nC = 2 MoC
h/1— (v/c)?
2T 27 2T mgyVv
k=""=""mv=
Aol h J1-(v/c)?
m,C°vV
dow/dv = 27t 0
do _ do/dv / h(z— (v/c)? )"
g T 2
dk  dk/dv dk/dv = 27 M, C




Heisenberg’s Uncertainty Principle

It is not possible to precisely specify a
particle’s position and momentum at
the same time.
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Implications

* |t is impossible to know both the position
and momentum exactly, i.e., Ax=0 and
Ap=0

* These uncertainties are inherent in the

physical world and have nothing to do
with the skill of the observer

h=1.054 x 10_34LJ ﬁ -
* Because h is so small, these uncertainties

are not observable in normal everyday
situations



Example of Baseball

» A pitcher throws a 0.1-kg baseball at 40
m/s

* S50 momentum is 0.1 x 40 =4 kg m/s

* Suppose the momentum is measured to
an accuracy of 1 percent, i.e.,

Ap =0.01p=4x102kg m/s



Example of Baseball (cont 'd)

* The uncertainty in position is
then

Ax >

—1.3x 10733
— 4 Ap 8 H

* No wonder one does not observe
the effects of the uncertainty
principle in everyday life!



Example of Electron

« Same situation, but baseball replaced
by an electron which has mass 9.11 x
1031 kg traveling at 40 m/s

« So momentum = 3.6 x 10-2° kg m/s
and its uncertainty= 3.6 x 1031 kg m/s

* The uncertainty in position is then

h
Az >
v 47 Ap

=14 %x10"*m



Diffraction of Electron by a slit

electrons. Before entering the slit, the electron
has a definite momentum p and after passing
through the slit the electron gets diffracted.
For first minima
Ax.sin @ = A, woiCl)
[.- d sin @ = nd)




Electron Diffraction -Continued

. uncertainty in the measurement of position
of electrons at which the electron beam enters
the slit

A

ax = sin &

5

dince the electron can be anywhere in the diffraction patter from angle ~ 610 4 6, $0 the component
of momentum perpendicularto the inital direction can have momentum p sin 8 and p sin (- )

[=-psin )]
" Uncertainty in momentum of electron |
Ap =psinf - (-psin ) =2psin 0
2h
or Ap=—sn0 . (3)

A



Electron Diffraction -Continued

From Eq. (2) & (3), we have

or Ax. Ap = A/,‘



Gamma Ray Microscope

(a)Limitation in determing the |
position of electron
A |
Ax = - — —(1 |
2 5in & (1) 3 a
A = wavelenth of scattered photon X p'_lgsmgd
O=half angle subtended by the it | “f‘\n
. . . R ncoming | 9
objective at the object i.e. S
electron N R ket
_f-" i Recail
P= ) electron -




(b)Limitation in determining the momentum of the electron

h
Let momentum of the Incident photon p = —
A

, R

momentum of the scattered photonp = —

photon is scattered along OQ,Then
Momentum of the scattered Photon along X — axis = 7 sin @
. __hoh
Momentum imparted to the electron along X —axis =—-— — sint

A A



If photon is scattered along OP, then

Momentum of the scattered Photon along X — axis = —; sin &
| | h h h
Momentum imparted to the electron along X — axis = ;7 sinfl) = F + 7 sin &
h
Thus an electron can have momentum (E + 7 sin H) and( ST sin &)
- | h h h b
Uncertainity in Momentumof the electron along X — axis Apx = ; + 7 sin 6 - (} =7 sin )
2h
ﬁm::T sind — ———(2)
1 and 2 AxApx = if}fzh'a—h
from1an xdpx = e g 7 sinfd =

AxApx = h



Applications of Heisenberg uncertainty Principle

Size of Nucleus =10** m
If electron is present in the nucleus uncertainty
in the position of electron is =10 m

h 1055%107
ADE = = Kg ms

Ax IO“M )
Ap = 105 x 107*Y kg ms™"!




The minimum momentum of the electron must be
at least equal to uncertainty in momentum

pbp = 105 x 109 kg ms”

\/-P [ +mﬂ|::'

204 << piet, 0 it s neglected, hence
E =pc
E =(105x1020) x 3x 10%)
105x1072) 3x 10%)
16x107"
= .20 MeV

Since for electron, myg

MeV

—
~



Kinetic energy

| 2 &
) 2 —
Classical iﬁ quantum operator [P Im 52
In3D: K 32 52 B2 -h?
T=—-_—" Q:— +~ 5 + —) = A
2m “gx2 Gyl &ul 2m
82 82 @_2 the laplacian

Pierre Simon, Marquis de Laplace
(1749 -1827)
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Time-dependent Schrddinger Equation

Without potential E=T
With potential E=T + V

¥(r.t h2
ilﬁ% =~ AP(,t)
Ot _ K2

>m AP@H + Vaen¥ e

M ot

Erwin Rudolf Josef Alexander Schrodinger
Austrian
1887 —1961
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Schrodinger Equation for stationary states

lmc';\lP(r-,,t) _ k2

ot I m A¥(r,t) + V(r,t)'F(r,t)

-1Et
h

W(r,t) =Y(r).Y(t) = A exp( ) ‘W(r)

_OP(0). P () 112
ih ,

I Potential energy

Kinetic energy Total energy

=5 AP PO + V)P Pt =E Fr). ¥

33



Schrodinger Equation for stationary states

h2 e |
>—- AY(@®) +VoO)VY@)=E Y@

2m

Remember

HYxv.z)=E¥(xyv.z) with H =

H is the hamiltonian

Half penny bridge in Dublin Sir William Rowan Hamilton
Irish 1805-1865



YV V VY

Schrodinger’s equation applied to free particle

Consider a particle of mass m moving along positive x-axis.

Particle is said to be free if it is not under the influence of any field or force.
Therefore for a free particle potential energy can be considered to be constant
or zero.

The Schrodinger wave equation for a free particle is given by.

h o'V

- +Vy =E
2mox’ v
=10
h o’V
— - — E’q}
2mox”
n o

> +Ey =0
2mox”
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~ 2 + _-. Ew =
{J?{* t;'

» : 2
oV 8rim let kz _ 8m*mE
-+ Y =0 =
ox* h?2 h?

i
— +k y=0
CcX"

The Solution of this equation is

o
¥Y=-ae'"+Be

=7k



The solution of the equation is of the form

Y = ﬁhezh+ B E‘:‘jh

Where A and B are unknown constants to be determined. Since there are no
boundary conditions A, B and k can have any values.

2 8TimE :
k = —

h?
Energy of the particle is given by
kh

E = =
ST°m

Kk

Ensrgy-momentum relationship for a free particle.

+* Since there is no restriction on “k” there is no restriction on “E.”

% Therefore energy of the free particle is not quantized. i.e., free particle can
have any value of energy.

37



MOTION OF AN ELECTRON IN ONE DIMENSIONAL
POTENTIAL WELL (PARTICLE IN A BOX)

Consider a particle (like electron) of mass m, moving along positive x-axis
between two walls of infinite height, one located at x=0 and another at x=L

Let potential energy of the electron is assumed to be zero in the region in-
between the two walls and infinity in the region beyond the walls.

V=0 for 0<x<L
V=ow for x<0 & x>L T%
"0 Y vy =Ey V:oo V:O o

- 2mox’ —

V=0 for O0<x<L

D)

N

X=0 X=L

X-axis 38



h' o'V

-~ 2 + E\,If =
2mox”
Y 2m
-~ 2 + _-. Ew =
{;‘?{h t;'
"12”; Q2 Q2
C Tem 2 T‘mE
T + Ew =0 letk = —
oxX” h2 h?
o
— +tk y=0
X"

The Solution of this equation is

Y = ALEIh+ B E‘jh



at x=0, w=0 .. (1)
and at x=L, w=0 .. (11

Refer Class notes for detalls



Therefore correct solution of the equation can be written as

where (n=1,2,3,...).

The possible values of v are called eigen functions

2
E = nzfiz
Sml

The possible values of energy are called Eigenvalues.

41
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E = 5
SmlL
h?
E = —
SmL
4 2
E,6 = h,
8mL”
97,
Es = hv
8mL”

Fnergy

n=3
n=2
n=1




(a)

lypr(20)|?
0

E

N
n=>5
n=4
n=3
n=2
n=1

E=0

(b)
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The 3D infinite potential well

It's easy to show that:

w(x,y,z)=Asin(k x) sin(k,y) sin(k_z)

where: k. =7zn_/L, k,=7nn /L, k., =nn /L
22 2 nf 2
and: B n;‘,'+ ;) +n:;

<
L,

927
7T°h 2 2 2 R
— 2mL2 (nx +ny +I’lz) ‘Z/

E

[y
Z
oL
When the box is a cube: @
—_—>
X
L

X



Wave functions and energies for particle in a 3D box:

2 . (R X Ny
V@ = sin(=—) A= {123,...]

2 L (ymy n.\.={1,2,3,...} . 3
Y(y) = / 7 sm( 3 ) — eigenfunctions

2 Rz y
«/z(z)=,/1: sin( = ) n,= {1,2,3,...}

FE

o (n? n n
E;+E,+E,=E="——| %4 4 = eigenvalues
2m (L, L, L
g B8 L+ +0) eigenvalues if L= =[>= L
- ImI2\ * y z g x Ty T T



The 3D infinite potential well

It's easy to show that:

w(x,y,z)=Asin(k x) sin(k,y) sin(k_z)

where: k. =7zn_/L, k,=7nn /L, k., =nn /L
22 2 nf 2
and: B n;‘,'+ ;) +n:;
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Degeneracy

** The energy level is said to be degenerate if it corresponds to two or more different
measurable states of a quantum system.

+* Conversely, two or more different states of a quantum mechanical system are said to be
degenerate if they give the same value of energy upon measurement.

242
A Energy F = ;: T;Jz
m

2 2 2
(nx+ny+nz)

degeneracy =5

degeneracy = 3

non-degenerate (ground state)




QUANTUM COMPUTING TIMELINE

Quantum computing st working 2-qubit I1st quantum byte IBM successfully
first theorized by quantum computer created by scientists tests 16-gqubit
Paul Benioff demonstrated at Innsbruck (Austria) guantum computer
A - . B
—-| 1981 -——-\ ‘ 1994 ’ ‘ 1998 ’ ‘ 2001 ' ‘2005’ 2017 ‘—
—y
v v v
Discovery of Shor's 1st execution of Harvard announces
algorithm for Shor's algorithm S1-qubit quantum
integer factornzation computer

September 28, 2018

Atom Computing and Bleximo Land Venture Funding of $5 Million and $1.5
Million Respectively

Two Berkeley, California based quantum startups with founders who are alumni of
Rigetti Computing have raised seed funding rounds to develop distinctly different
varieties of quantum machines. Atom Computing has raised $5M in a seed round
led by Venrock and Bleximo’s seed round of $1.5 million was led by Eniac
Ventures.



https://quantumcomputingreport.com/news/atom-computing-and-bleximo-land-venture-funding-of-5-million-and-1-5-million-respectively/
https://quantumcomputingreport.com/news/atom-computing-and-bleximo-land-venture-funding-of-5-million-and-1-5-million-respectively/

Quantum Computing

A classical computer encodes information as a string of binary digits, or bits.
Quantum computers supercharge processing power because they use quantum bits, (qubits)

This exist in a superposition of states, qubits can be both “1” and “0" at the same time.

A QUANTUM SYSTEM REPLACES

CLASSICAL COMPUTER CLASSICAL BITS WITH QUANTUM
INPUT OUTPUT QUBITS
(8rTs) (8iTS)
10 — —> 0101 -QUBITS FOLLOW THE SUPERFOSITION
PRINCIPLE AND CAN EXIST AS"QY AND

ey} #4* AT THE SAME TIME
\ ‘.

- OUTPUT -USING QUBITS INSTEAD OF BITS WITH
INFUT A SINGLE IMPUT ONE COULDP PROCESS
) GURNTHM CONPGTES ) ALL THE POSSIBLE COMBINATIONS OF “0"
(WB"S (mts AND “1™'s IN A STRING AT THE SAME TIME
0001 0001
0010 o 0010
(?2)(1"1l 82)% *QUANTUM ALGORITMS USING THIS ABILITY
0001 0001 Could SOLVE. CERTAIN TYPES OF PROBLEMS
0010 0010 MUCH, MUCH FASTER THAN ANY CLASSICAL

0011 0011




OUTPUT

1110 1]{0][O] Electrical Signals ' Measurement { 0000 0@
T | Results
I
Gates 1 Gates
(classical) i (quantum)
I

OJLLHLOJL] Electrical Signals 1+ Quantum State

INPUT

Classical Computer Quantum Computer



