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Module 3 

QUANTUM MECHANICS – NOTES 

(As per SVU-R2020 Scheme & Syllabus) 

 

 Introduction 

Quantum mechanics emerged out of a process to reformulate our concepts and understanding of the 
nature. Most of our technological applications are still based on the traditional “classical physics” 
consisting of wave motion, mechanics, electromagnetism, thermodynamics, optics etc. However, the 
quantum mechanical approach becomes essential as we probe further and further into the nature; 
particularly for studying the world of “very small”. Masses, dimensions and other physical parameters 
of objects in this world are orders of magnitudes smaller than our “everyday-life” world. More 
importantly, these “very small” objects are beyond our senses either directly or even indirectly 
through instruments. How can we develop the trajectory of a proton if we can’t actually see it like a 
stone going up and coming down? Moreover, we have a tendency to visualize any object by our 
common preconception.  For example, when we talk about an electron, we tend to give it a spherical, 
ball-bearing type look. But how do we know that it’s a particle if we can’t see to it? 

 Facing to very small masses, very small dimensions and a large ensemble of such “identical, 
indistinguishable” objects (e.g. electrons in a conductor), statistical interpretation becomes inherent 
in quantum mechanics. Results are given in terms of “probability functions” rather than 
“deterministic” laws of traditional sciences. Values of physical quantities such as position, energy, 
momentum etc. are expressed as “most probable distribution” instead of an exact value. This should 
not be regarded as the shortfall of the theory because the so-called “deterministic” laws of 
macroscopic world can be shown as an approximation of the quantum mechanical treatment in the 
limit of large values of physical parameters. Quantum physics is in fact, the “superset” of all of classical 
sciences. 

 

 Background 
It would be relevant to discuss some of the important findings that changed the gears of physics at 
the beginning of the 20th century. Classical physics could not account for many of the experimental 
findings carried out at that time. Some of them were as follows: 
1) Blackbody radiation catastrophe: By and large, the Planck’s formula for blackbody radiation is 

considered as the birthplace of quantum physics. It used a novel concept of assuming every 
matter as made of small oscillating particles (oscillators) and that the energy emitted by their 
ensemble be in discrete manner rather than at any arbitrary value (continuous). The formula 
exactly matched with the experimental results at any wavelength and the discreteness of energy 
was established. 

2) Specific heats of solids at low temperatures. 
3) Constituents of matter, stability of atoms. 
4) Origin of atomic and molecular spectra. 
5) Fine structure and hyperfine structure splitting of spectral lines in magnetic field. 
6) Wide range of conductivity of solids (10-14 S/m to 108 S/m). 
7) Origin of magnetism, wide range of magnetisation (109 A/m to 10-6 A/m) and spontaneous 

magnetisation of ferromagnetic materials. 
8) Cause of radioactivity. 
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9) Phenomenon of superconductivity. 
10) Production of X-rays. 
11) The photoelectric effect. 
12) Zeeman effect. 
13) Franck-Hertz Experiment. 
14) Stern-Gerlach Experiment. 

  
 The events indicated above are essentially before de’Broglie put forward his hypothesis. Heisenberg 

(1925) and Schrödinger (1926) independently developed core theories of quantum mechanics. Later, 
Dirac (1928) contrived a general formalism and also included relativistic extensions to it. Since then 
there has been a continuous development in the quantum mechanics at atomic, nuclear and 
elementary particle scales but discussion on this development is beyond the scope of the syllabus. 

 

 de’Broglie’s hypothesis 

Louis de’Broglie tried to sum up the experimental finding by his time into a set of logical arguments 
based on symmetry. Energy in the universe is manifested in two forms viz radiation and matter. By 
then, it was known that radiation shows both, particle properties and wave properties. de’broglie 
then argued that why can’t matter, which is supposed to be made of particles and mostly governed 
by the laws of Newtonian mechanics, exhibit wave nature? Following chart can be useful to 
understand de’Broglie’s arguments: 

 

At that time, there was no experimental basis to his hypothesis but many took it seriously and soon 
wave nature of electrons, presumed as perfect particles was demonstrated by two independent 
experiments; one by Davison and Germer and the other by G P Thomson. Both these experiments 
were very similar to X-ray diffraction and based on diffraction of electrons by using crystals as three 
dimensional diffraction gratings. 

Prior to this, it was already established that particle aspect of radiation called as “photons” are 
governed by two important equations: 

E = hν =
hc

λ
 Also, E = mc2 = (mc)c = pc ⇒

hc

λ
= pc or λ =

h

p
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De Broglie extended this equation to all material particles having mass “m” and moving with speed 
“v”, so the matter has an associated wave whose wavelength can be estimated as 

λ =
h

mv
  (v < c always)    (1) 

This relation is called de’Broglie equation. 

Note that this equation connects two physical quantities which are usually not used together because 
the momentum is a typical particle parameter while the wavelength is a typical wave parameter. The 
notions of a particle and a wave as we learn describe them as opposite to each other. By “particle” 
we imagine a localized, concise entity and which can be obtained in a discrete fashion while by a 
“wave” we try to imagine a distributed entity continuous all over. For example, the ocean wave hits 
the shore simultaneously all over but a marble can hit only at a particular point at a time. 

For a particle having kinetic energy K, the de’Broglie wavelength can be written as 

λ =
h

√2mK
 as K =

p2

2m
 = Kinetic energy acquired  (2) 

For a charged particle of charge “q” accelerated through a potential difference of “V”, 

λ =
h

√2mqV
 as qV = Potential energy gained  (3) 

 

 Experimental verification of de’Broglie’s hypothesis - The Davison-Germer Experiment 

An important demonstration of diffraction of electrons was given by Davison and Germer and 
independently by G P Thomson in 1927. These experiments confirmed de’Broglie’s hypothesis and 
consequently, the wave nature of material particles. The demonstration is considered to be one of 
the important experiments in the development of quantum mechanics. 

If electrons have wave nature, they should also exhibit diffraction effect. With an electron gun, 
electrons at energy 50 – 100 eV can easily be obtained. At this energy, according to de’Broglie 
equation, electrons should have wavelength of a few angstrom. So crystals can act as diffraction 
grating for electrons also in the same manner they act for X-ray diffraction. 

Experimental set-up: 

In the actual experiment, Davison and Germer selected a nickel crystal. A collimated beam of 
monoenergetic electrons is obtained by an arrangement consisting of electron gun, set of anodes, 
collimating slits and variable voltage source. The crystal can be rotated on its axis. A detector was 
placed in the scattering direction, which can also be rotated in accordance to the rotation of the 
crystal. The detector was attached with a scale to measure angle of scattering (φ) and hence to deduce 
the glancing angle (θ). 

Experiment: 

Electrons emitted from a hot tungsten filament after getting accelerated and focused fall on the nickel 
crystal. Electrons scattered from the crystal are collected at the detector, which produces the count 
in different directions with respect to the incident beam. The intensity of scattering (detector count) 
is plotted as a function of scattering angle for different values of accelerating voltage (V). 
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Investigations: 

Davison and Germer found that the detector current, which in turn depends upon intensity of 
scattered electrons increased significantly at certain angle of scattering and at certain values of 
accelerating voltage. In a particular observation, they found maximum detector current 
corresponding to scattering angle of 50° for accelerating voltage of 54 volt. With reference to the 
selected orientation of the nickel crystal (lattice planes), this scattering angle corresponded to 
glancing angle of 65°. The detector current was very low and random at different angle of scattering. 
This suggested that there is certain kind of preference to a particular glancing angle when the 
electrons scatter from the crystal. This could only be explained if is assumed that electrons have a 

wave nature and obey the Bragg’s law viz 2d sin = n. 

Calculations: 

The interplanar spacing (d) for the selected orientation of nickel crystal as obtained from X-ray analysis 
was 0.91 Å. The glancing angle for which, maximum count obtained was 65°. Using Bragg’s law, it 

gives wavelength of possible waves as λ =
2d sin θ

n
. The scattering angle corresponded to the first order 

of diffraction maximum. Hence, 𝜆 = 2 × 0.91 × sin 65 = 1.65 Å. Assuming de’Broglie’ hypothesis to 
be correct, Davison and Germer estimated the wavelength of electron waves using de’Broglie 

equation 𝛌 =
𝐡

√𝟐𝐦𝐪𝐕
. This yielded λ =

6.63×10−34

√2×9.1×10−31×1.6×10−19×54
= 1.67 Å, in excellent closeness to 

that obtained from the Bragg’s law. Thus, de’Broglie equation indeed has significance and wave nature 
of matter was established experimentally for the first time. 

Further confirmation: 

The experiment carried independently by G. P. Thomson also confirmed the wave nature of electrons. 
Later, experiments were performed by using beams of other particle such as protons, neutrons and 
alpha particles, which also agreed perfectly with the theoretical predictions. Similar experiments were 
done using heavier ions to prove that wave nature is not restricted only to elementary particles but it 
applied virtually to all of matter. Thus, wave nature of matter was established. The Davison-Germer 
experiment stood as the pioneering experiment in the confirmation of quantum mechanics. 

  

 Phase velocity (wave velocity), wave packet and group velocity: 

The waves associated with all material particles moving with certain speed are called as “matter 
waves” but exactly what kind of waves are these? Let’s find the velocity with which a wave associated 
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with a particle moves. Traditionally, the rate at which the plane containing waves having the same 
phase (viz. the wave front) advances in a certain direction is called the phase velocity. It is the same 
as the wave velocity in ordinary sense in a wave motion. Thus, 

vphase =
ω

k
; Where ω = 2πν and k =

2π

λ
 

∴ vphase =  ν λ =
E

h
 ×

h

p
=

E

p
=

mc2

mv
=

c2

v
> c! as v < c always. Here, “v” is particle velocity in the 

traditional sense. 

Estimation above gives an unusual and absurd result that the wave associated with particle moves 
with an extraordinary velocity leaving the particle far behind. Since this is impossible, it is concluded 
that particle cannot be associated with a single wave in ordinary sense. Next, it is proposed that a 
number of waves of different frequencies are associated with the particle. 

 

 

 

The reason for this proposal is that a large number of waves can be added and it results in a repetitive 
pattern called as the “wave packet”. This wave packet essentially carries the energy associated with 
the system (a particle; in this case). The collection of these waves is called as the wave group and the 
speed at which this entire group moves is different than velocities of individual waves. It is not just 
the average velocity but it gives the rate at which frequency varies as a function of the wave vector 
“k” within the group. In mathematical terms, 

Group velocity Vg =
dω

dk
. Let’s estimate what is this group velocity. 

Let  Vg =
dω

dk
=

dω
dv⁄

dk
dv⁄

; Where, “v” is the particle velocity in traditional sense. 

We know that  ω = 2πν ∴ ω =
2πE

h
=

2πmc2

h
=

2πm0c2

h√1−v2

c2⁄

; By using Planck’s formula, Mass-energy 

equivalence and relativistic expression for mass. 

∴
dω

dv
=

2πm0v

h(1−v2

c2⁄ )
3

2⁄
. 

Also, k =
2π

λ
∴ k =

2πp

h
=

2πmv

h
=

2πm0v

h√1−v2

c2⁄

; By using de’Broglie equation, definition of momentum 

and relativistic expression for mass. 
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∴
dk

dv
=

2πm0

h(1−v2

c2⁄ )
3

2⁄
. 

∴
dω

dk
=

dω
dv⁄

dk
dv⁄

= v i. e. vparticle. 

Thus the velocity with which the group moves in the form a wave packet is the same as particle 
velocity. So it is inferred that a particle can be represented by a wave packet. 

 

 Matter waves and their properties 

Since all the material particles show wavelike properties such as interference or diffraction, we try to 
associate wave nature to matter in general. But it should be understood that it is an entirely different 
concept that our usual understanding of the waves and wave motion. In introductory section it was 
stated that quantum mechanical treatment of solving any problem is rather statistical in nature and 
it involves calculation of probability factors. For example, classically, the radius of first Bohr orbit in 
hydrogen atom is 0.53 Ǻ exactly but according to quantum mechanics, it is just the most probable 
value of the radius. When we attempt to measure the radius a number of times, many times we may 
obtain this value but occasionally we may get some other values also. Thus, any value is expressed 
with some distribution about the most probable value instead of an exact value. The exact value of a 
physical quantity is somehow a representation of pure particle picture used in classical mechanics 
while the probabilistic value with some spread (often taken as the uncertainty) is a kind of wave 
picture used in quantum mechanics. The wave nature of matter and the concept of wave packet are 
linked with this probabilistic interpretation. This connection was first proposed by Max Born. In 
quantum mechanics, this probabilistic nature is carried by an abstract mathematical quantity called 
as the “wave function”. 

 

 Differences between electromagnetic waves and matter waves 

Electromagnetic waves Matter waves 

1) Electromagnetic waves are associated with 
photon, which has zero rest mass. 

Matter waves are associated with all moving 
material particles having non-zero rest mass. 

2) A single de’Broglie wave can be associated 
with the particle (photon). 

A single de’Broglie wave cannot be associated 
with the material particle. 

3) The quantities those vary periodically with 
space and time are the electric and 
magnetic fields. 

The quantity that varies periodically with space 
and time is called the wave function. 

4) Electric and magnetic fields are real physical 
quantities and can be measured 
experimentally. 

The wave function is an abstract mathematical 
quantity and has no direct physical 
interpretation. 

5) Square of field amplitude gives intensity of 
electromagnetic waves. 

Square of wave function gives probability of 
locating the particle in a given interval. 
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 Properties of matter waves: 

1) Matter waves are associated with all moving particles. 

2) Their wavelength is inversely proportional to momentum of the particle. 

3) They are independent of charge of the particle. 

4) They are neither mechanical nor electromagnetic kind of waves. 

5) A particle cannot be represented by a single wave. Instead, it is associated with a large number of 
waves forming a wave packet. 

6) The quantity that varies periodically with space and time is taken as the wave function. 

7) Square of the wave function gives probability of locating the particle. 

 

 Wave packet, wave-particle duality and the uncertainty 

he idea of a wave packet is central and very important in quantum mechanics. The wave packet has 

finite extent and it is neither “localised” like an ideal particle nor spread all over from –  to +  like 
an ideal wave. This leads to an idea of wave-particle dualism. By wave-particle duality it means that 
matter as well as radiation cannot be assigned only wave nature or only particle nature but in 
principle, matter as well as radiation possesses dual nature. However, at a time only one nature is 
exhibited and never both simultaneously. This wave-particle duality can be explained by using the 
concept of a wave packet as follows: 

1) In quantum mechanics, all material particles are represented by a wave packet of finite extent. 
Mathematically, the wave packet is formed by coupling a large number of waves by means of 
Fourier analysis. 

2) Spread of the wave packet is linked with uncertainty in the exact location of the particle. 

3) Classically, a particle has an exact location at a given time. Now if we try to have exact location of 
the particle, the wave packet should be restricted in its extent. But, in doing so, the wave nature 
becomes in-deterministic. When the wave packet shrinks to a point giving exact particle picture, 
the wave nature collapses completely. 

4) On the other hand, if we try to have a perfect wave picture, the wave packet should be extended 
further. But in doing so, the position of the particle and hence the particle nature itself becomes 
highly uncertain. When the wave packet extends to infinity giving exact wave picture, the particle 
nature collapses completely. 

Since all the material particles show wavelike properties such as interference or diffraction effects, 
we try to associate wave nature to particle or matter in general. 

 

 The uncertainty principle 

In 1927, with his matrix formulation of quantum mechanics, Heisenberg proposed the uncertainty 
principle. It puts forward the fundamental theoretical limit to the exact determination of physical 
quantities. It is particularly applicable to simultaneous measurement of certain pairs of dynamical 
variable. In classical physics also it was long known that certain pairs of physical quantities such as 
position-momentum are “non-commutative” (i.e. AB ≠ BA). Heisenberg showed that the product of 
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uncertainties of such pairs is greater than or equal to the factor h
2π⁄  (in 2-Dimensions). In 

mathematical form, 

∆x∆px ≥
h

2π
 

It states that “It is impossible to exactly determine the position and momentum of an object 

simultaneously such that the product of their uncertainties is never better that the factor h 2π⁄ .” 

(In 3-Dimensions, the factor is h 4π⁄ ”). 

 Other forms of Uncertainty Principle: 

1. Energy-time: ∆E∆t ≥
h

2π
 

2. Angular position-angular momentum: ∆θ∆L ≥
h

2π
 

At first glance, the uncertainty principle may appear to be a negation since it puts forward the 
fundamental limit on exact measurements. It also leads to a misunderstanding that quantum 
mechanical approach does not yield exact value of any dynamical variable and hence it is incomplete. 
But it should be understood that the limitation comes due to the process of measurement itself. The 
fact is that the uncertainty principle is not just applicable at microscopic levels but virtually to all kinds 
of measurements; macroscopic as well as microscopic. At macroscopic levels, the uncertainties in the 
measurements are so small that we are usually unable to detect them and the results appear to be 
exact. But at the microscopic levels, the uncertainties become significant as compared to the actual 
values and the uncertainty principle becomes necessary. Uncertainty principle is not restricted just to 
put fundamental limit on measurements but it proved to be far more applicable to clarify a number 
of theoretical gaps as well as experimental findings. 

 

 Proof-of-concept derivation for uncertainty principle 

Uncertainty principle first appeared through the matrix algebra developed by Heisenberg for quantum 
mechanics and its actual derivation is beyond the scope of this syllabus. Hence, one of the qualitative 
ways to arrive at the uncertainty principle is given here. 

Single slit diffraction of electrons – the wave picture: 

Here, we consider that electron is wave of wavelength λ be incident on a narrow slit of width d. Let p’ 
be the correspondong initial momentum of electron as per de’Broglie equation. The single narrow slit 
has the same effect as it would have on a monochromatic beam of light. As an electron passes through 

the slit, its position becomes uncertain by an amount say y. Since it can pass anywhere from the slit, 

we can take y  d. Further, the electron gains y-component of momentum as it can reach anywhere 
on the screen on either sides of central maximum B0. Let p be the momentum of electron after passing 
through the slit. The y-component of momentum is given by py = p sin θ. For convenience, let the 

electron reach at point A1 on the screen. As this point corresponds to first minimum in the diffraction 

pattern, it is given by an equation sin θ =
λ

d
, where θ is angle of diffraction. 
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Now, letting the uncertainty in the y-component of momentum to be at the most equal to the y-
component of momentum itself, 

∆py ≈ py ≈ p sin θ ≈
h

λ

λ

d
≈

h

∆y
; By using de’Broglie’s equation, expression for the first minimum in the 

diffraction pattern and the substitution y  d. 

Thus, ∆y∆py ≈ h, as required. 

 

Seeing an electron with a gamma-ray microscope – the particle picture: 

Here, we consider an electron as a perfect particle. For convenience, we assume that it is almost at 
rest and we try to locate its position by bouncing off a γ-ray photons from it. This γ-ray is a suitable 
choice, as one needs a beam having wavelength smaller than the object in order to resolve it. Only γ-
rays have wavelength lesser than the de’Broglie wavelength of an electron. We imagine at least a 
single photon having momentum p’ strikes the electron and it is scattered as per the Compton 
scattering mechanism. 
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The incident photon imparts some momentum on the electron. The microscope is held in a direction 
so as to collect the scattered photon which carries the “information” of position of the electron. The 
formation of “image” by the photon (i.e. position of the electron) is limited by the inherent diffraction 
effect. The position of the electron (i.e. the “image”) has a spread equal to the width of the central 
maximum, which is given by 

∆x ≈
λf

a
  ----- (1) 

Where f is the focal length of the lens and a is aperture size. Both are microscope parameters. This 
value represents uncertainty in the position of the electron. 

Next, let the momentum imparted on the electron along the X-direction be approximately equal to 

the X-component of the momentum of scattered photon, which is scattered within an angle 2 
towards the microscope. From the diagram, this is px = p sin θ. Taking uncertainty in the momentum 

of the electron Δp to be at the most equal to px, we can write, ∆p ≈ p sin θ ≈
h

λ
sin θ. From the 

diagram, for very small apertures, a ≪ f  and sin θ =
a/2

√(a/2)2+f2
≈

a

2f
. Therefore, 

∆p ≈
ha

2λf
  ----- (2) 

From (1) and (2), ∆x∆p ≈
λf

a
×

ha

2λf
 

Thus, ∆x∆p ≈ h/2, as required. 

 

 

 Implications of the uncertainty principle 

The uncertainty principle could answer many unsolved questions in different branches of physics such 
as nuclear, atomic and molecular, solid state, spectroscopy, astrophysics and cosmology. Creation of 
very short-lived elementary particles, wave-particle duality, non-existence of electrons in the nucleus, 
zero-point energy possessed by atoms in solids at absolute zero, finite width of spectral lines, limits 
of measurements of frequencies of radiations, beta-decay (emission of an electron by the nucleus), 
sharing of electrons in covalent bonds, exact energy value of the ground state and many other effects 
can be satisfactorily explained with the help of the uncertainty principle. We take a look at some 
common implications of the uncertainty principle. 

(a) non-existence of electrons in the nucleus: 

The maximum kinetic energies possessed by electrons during beta decay are about 100 keV. Let an 

electron be a part of the nucleus. The average nuclear dimensions are about 10-15 m. Taking x  10-

15 m, p  1.055 x 10-19 kg-m/s. Assuming the momentum possessed by such electron to be at least 

equal to uncertainty in it, p  1.055 x 10-19 kg-m/s. This electron is indeed a relativistic electron as v 

 c. Using the expression of kinetic energy, K = √m0
2c4 + p2c2 − m0c2. Here, (m0c2)2 ≪ (pc)2. 

Therefore, K ≈ pc = 3.165 x 10-11 J = 197.8 MeV! Electrons never have so large energy and it 
contradicts the experimental results. Hence the initial argument is wrong and it can be concluded that 
electrons cannot be constituents of the nucleus. 
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(b) Minimum energy possessed by an electron in the atom: 

Here, the average atomic dimensions are about 10-10 m and an electron is a part of the atom. Taking 

x  10-10 m, p  1.055 x 10-24 kg-m/s. Assuming the momentum possessed by such electron to be at 

least equal to uncertainty in it, p  1.055 x 10-24 kg-m/s. This electron is not a relativistic electron as v 

<< c for this electron. Using the normal expression for kinetic energy, K =
p2

2m
, K = 6.1 x 10-19 J = 3.8 

eV. It suggests that the minimum energy possessed by any electron in any atom cannot be less that 
3.8 eV. Indeed, for the ground state electron in a hydrogen atom, the electron energy is 13.6 eV, which 
is well-above this limit. 

(c) Finite width of spectral lines 

Wavelengths (or frequencies) of radiation emitted from any monochromatic source are never sharp 
at a particular value but always have some “spread”, which is usually referred as “line width”. This is 
true even for a laser source. In spectroscopy, for many years, it was a wonder but finally, the 
explanation was provided by the uncertainty principle. The average lifetime of an excited state is 
typically 10-8 sec. When an electron makes a downward jump from such state, it introduces an 
uncertainty in the exact time interval for de-excitation. Taking maximum uncertainty in the 

measurement of time to be the lifetime of the excited state, ∆E ≈
h

2π⁄

∆t
. 

∴ ∆ν =
∆E

h
≈

1

2π∆t
≈ 16 x 106Hz = 16 MHz. 

This is the theoretical line width of any spectral line emitted from a perfect monochromatic source. 
The important point is that it is non-zero. 

 

 Wave Mechanics 

Material particles follow laws of Newtonian mechanics. These laws and equations are based on 
classical concept of “perfect particles”. But at the beginning of 20th century, many experimentalists 
showed that material particles had effects which were typically regarded for many years as “wave 
properties” (for example, diffraction of electrons). There was no explanation to these newly 
demonstrated wave properties of matter in the framework of classical Newtonian mechanics. Hence, 
there was a need of mechanics, which could incorporate the wave nature of matter. This was 
developed independently by Werner Heisenberg and Erwin Schrödinger. Heisenberg’s formulation 
contains matrix algebra while that of Schrödinger’s is based on wave equations. Schrödinger’s 
approach is called as the wave mechanics. 

For this work, quantum mechanics introduced new physical properties and concepts. For example, 
the wave packet was introduced to explain wave nature shown by material particles and later it was 
supported by a foundation theory. A general practice in quantum mechanics in the early stage was to 
assign certain properties to microscopic objects, to form some models, to predict some effects and to 
link them with some observable/measureable macroscopic parameter. Further, this model should be 
consistent for any other kind of such experimentations. For example, all elementary particles like 
electrons and protons have been assigned an additional property called the spin and it is modelled 
that atoms possess magnetic moments due to intrinsic spins as well as orbital motion of electrons. 
Now, although we can’t see how an electron is, whether it actually “spins” and “revolves” and in what 
sense it interacts with a magnetic field, we can verify effect of the spin and orbital magnetic moments 
due to a collection of large number atoms in terms of magnetisation possessed by certain 
ferromagnetic materials. The amount of magnetisation can be measured experimentally and it 
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becomes the “observed/measured macroscopic parameter” in this case. Later of course, the concept 
of spin was supported by a foundation theory developed by Dirac based on relativistic quantum 
mechanics. 

 

 The Wave function  (x, t) 
A wave is said to be doubly periodic phenomenon meaning, in any kind of a wave, we can associate 
at least one physical quantity which is a periodic function of space (position) and time. For example, 
in electromagnetic waves, they are the electric and magnetic fields while in sound waves, it is the 
acoustic pressure that varies and gives rise to a compression or a rarefaction. In matter waves, this 
job has been assigned to the wave function. The only difference is that unlike electric/magnetic fields 
or pressure, which are real, physical quantities, the wave function is an abstract mathematical term 
and it can be a complex quantity to have a more general approach. However, the square of the wave 

function i.e. * or ||2 is called as the “probability” of finding the particle and this is a real number 
between 0 and 1 (or 0% and 100%). Thus, the matter waves or wave associated with material particles 
are somewhat related to the probabilistic outcome for any kind of measurement performed on the 
particle. Therefore, sometimes, matter waves are called as “waves of probability”. 

 

 Conditions on the wave function 

The wave function should satisfy following requirements: 

1) It must be finite, single valued and continuous (and hence differentiable) everywhere. 

2) Its derivatives (
∂

∂x
,

∂

∂t
 etc.) must also be finite, single valued and continuous. 

3) It must be “normalised” meaning as x → ±∞, (x, t) → 0. 

4) It must have at least one physically acceptable solution. 

5) It must obey the principle of superposition of waves i.e. if 1 and 2 are solutions of the wave 

equation then A1 + B2 is also a solution. 

 

 Schrödinger’s time dependent wave equation (STDE) 

With the wave function being complex and representing periodicity in space and time, we can thick 

of the most general expression for the wave function as (x, t) = Aei(kx−ωt); Where, A is amplitude.  

Let us develop Schrödinger’s equation from this expression of wave function. Taking partial 
derivatives with respect of space (x) and time (t), 

∂

∂t
= Aei(kx−ωt) × (− iω) = − iω = −i(2πν) = −i (

2πE

h
) = −

iE

ħ
 

∴ i ħ
∂

∂t
= E.    (1) 

Similarly, 

∂

∂x
= Aei(kx−ωt) × (ik) = ik = i (

2π

λ
) = i (

2πp

h
) =

ip

ħ
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∴
∂2

∂x2 = −
p2

ħ2 . Multiplying both sides by −
ħ2

2m
, 

∴ −
ħ2

2m

∂2

∂x2 =
p2

2m
 = K.   (2) 

Equations (1) and (2) are called “eigenvalue equations”. From both the equations we can identify an 

operator which operates on the wave function  and yields a parameter (physical quantity) multiplied 

by  again. For example, in equation (1), the term “i ħ
∂

∂t
” is called the “energy operator” as it operates 

on the wave function to give total energy “E”. This can be expressed as Eop() = E. Similarly, let V(x) 
be a potential energy operator such that 

V(x)(x, t) = V.    (3) 

Note that potential energy is considered as a function of only position, which is true for most of the 
dynamical systems in mechanics. (For example, the gravitational potential) 

As the second equation yields kinetic energy, we can couple equations (1), (2) and (3) to get a very 
familiar equation in mechanics that is T. E. = K. E. + P. E. Thus, 

i ħ
∂

∂t
= −

ħ2

2m

∂2

∂x2 +  V(x)(x, t)  (STDE) 

Equation above is known as Schrödinger’s time dependent wave equation. It is the central equation of 
wave mechanics just as the Newton’s second law is to classical mechanics. 

 

 Reduction to time-independent form (STIE) 

In many applications, it is sufficient to use the wave function which is the function of position alone. 
The applications include central force field problems (formation of the periodic table and all of 
chemistry!), harmonic oscillator (all types of SHM), potential well (traps such as electron in a quantum 
dot), potential barrier (tunnel effect), potential step (reflection and refraction), periodic potential 
(metals, semiconductors and insulators). 

The simplified version is obtained by using method of separation of variables. Let us express the wave 
function as 

(x, t) = φ(x). f(t) 

∴  i ħφ(x)
∂f

∂t
= −

ħ2

2m
f(t)

∂2φ

∂x2
+  V(x)φ(x)f(t) 

Dividing everywhere by φ(x). f(t), 

 i ħ
1

f

∂f

∂t
= −

ħ2

2m

1

φ

∂2φ

∂x2 +  V(x). 

The LHS is a function of only time whereas the RHS is a function of only position. Equating both sides 
to a common separation constant say “s”, 

iħ
1

f

∂f

∂t
= s. 

Integrating, f(t) = e−ist/ħ. Comparing this form with the time-factor part of the original expression of 

the wave function viz. e−iωt, we get 𝑠 = ħω = hν = E. 

Thus the separation constant is nothing but the total energy “E”. Using this result for the RHS, 
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−
ħ2

2m

1

φ

∂2φ

∂x2 +  V(x) = E. 

Multiplying everywhere by φ(x) and using complete derivative instead of partial since the reduced 
wave function φ(x) is a function of position alone, 

−
ħ2

2m

d2φ

dx2 +  V(x)φ(x) = Eφ(x)  (STIE) 

Equation above is known as Schrödinger’s time independent wave equation. Many microscopic 
systems are studied by using this equation. In fact, the whole of periodic table with the electron 
configurations, shells, orbitals, stationary orbits, selection rules, l-s/j-j coupling, bonding-antibonding, 
the numbers n/l/ml/ms and the entire chemistry of elements is in fact, derived from solution of this 
Schrödinger’s equation in the electrostatic central force field problem having spherical symmetry. 

 

 Application to particle trapped in a 1-dimentional potential well (particle in a box problem) 

Here, we consider a classic example of a particle trapped in a one dimensional “potential well” of 
infinite height. It is of course, an idealistic example but it is the most simple and gives a quick start 
understanding of the solution of STIE. The potential function is described as follows: 

V(x) = 0;      for 0 < x < L 

          = ∞;      for x ≤ 0, and x ≥ L 

Following is a sketch of the same: 

 

The Schrödinger’s equation for region I can be written as  

−
ħ2

2m

d2φ

dx2 = Eφ(x); As V = 0. 

∴
d2φ

dx2 = −
2mE

ħ2 φ = −k2φ; Where, k =
√2mE

ħ
=

2π

λ
 

The real part of the general solution of differential equation of the form 
d2φ

dx2 + k2φ = 0 is 

φ(x) = A sin kx + B cos kx; Where, A and B are constant to be evaluated. 
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For region I and II, φ(x) = 0 identically for all values of x as the particle cannot exist in region II. 

Using boundary conditions for region I viz. φ(x) = 0 at x = 0, we get B = 0 (as cos (0) = 1). This implies 
that “A” cannot be zero as the wave function must have at least one non-zero solution. This 
requirement comes from the fact that the wave function is related with the probability of finding the 
particle in region I and if it is zero for any value of x between 0 and L, it means the particle does not 
exist in region I. This would contradict the statement of the problem itself as the particle is confined 
to region I. 

Thus, φ(x) = A sin kx 

Using the second boundary condition φ(x) = 0 at x = L, 

0 = A sin kL ⇒ k =
nπ

L
;  𝑛 = 1, 2, 3, … 

The value n = 0 is omitted as it would again mean that the wave function is zero for any value of x 
between 0 and L and thus, non-existence of particle in region I. This is absurd since the particle is 

constrained in region I with infinite boundaries. Thus, we get k or kn =
nπ

L
. As k =

√2mE

ħ
, we get 

En =
n2π2ħ2

2mL2
=

n2h2

8mL2
;  n = 1, 2, 3, … 

As n takes integer values, above equation implies an interesting result that energy possessed by the 
particle confined to a small region is “quantised” (En ∝ n2) 

It can be seen that the momentum is also quantised since it is given by p = ±ħk = ±
nh

2L
. 

Most probable positions of the particle for different values of n within the potential well can be 

obtained by squaring the wave function given by φ(x) = A sin
nπ

L
. Further, boundary conditions can 

be used to evaluate the constant A. It comes out to be √
2

L
 so the probability factor is 

 P(x) = φ(x)2 =
2

L
sin2 nπ

L
 

Integrating it over 0 to L most probable positions of the particle for a given value of n can be obtained. 

In practice, we get finite potential well instead of the infinite well discussed above. But the calculations 
used here apply to a good extent to microscopic problems. Many modern electronic devices (e.g. 
MOSFETs, laser diodes and LEDs) use these calculations for deciding the design criteria and material 
selection for these devices. 

 

 Extension to 3-dimentional case 

Above treatment can readily be extended to 3-dimensions. We assume particle confined to a 
“potential box” with sides a, b and c. The corresponding wave function can be written as 

φ(x, y, z) = φ(x)φ(y)φ(z) = √
8

abc
sin

nxπx

a
sin

nyπy

b
sin

nzπz

c
; where nx, ny and nz are quantum 

numbers along X, Y and Z dimensions respectively. 

For simplicity, if we assume cubical box with a = b = c, the energy can be written as 

En =
h2

8ma2
(nx

2 + nx
2 + nx

2);  nx, ny, nz = 1, 2, 3, … 
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 Degeneracy 

As nx, ny, nz each can take integer value, it is obvious that different permutations of nx, ny, nz yield 

the same value of energy given by above equation. For example, all the wave functions given by (say) 

φ211 = √
8

abc
sin

2πx

a
sin

πy

b
sin

πz

c
, φ121 = √

8

abc
sin

πx

a
sin

2πy

b
sin

πz

c
, φ112 = √

8

abc
sin

πx

a
sin

πy

b
sin

2πz

c
 

will have the same energy eigenvalue. Thus, if different wave functions have the same energy 
eigenvalue, that energy state is said to be “degenerate”. The number of possible wave functions 
sharing the energy eigenvalue decide the degree of degeneracy. Here, e.g. the energy state has 3-fold 
degeneracy. 

Modern research in electronics and materials science (e.g. quantum dots, single electron transistors) 
use these concepts. 

 

 Quantum computing 

Richard Feynman, a Nobel Laureate once suggested that we could use quantum mechanical 
concepts for computer algorithms. Today, this field is called quantum computing. A “quantum 
computer” is that machine, which utilizes quantum mechanical effects such as the superposition or 
quantum entanglement to improve computational power. 

 

 Physics of information 

Today’s computers are essentially classical in a sense that the fundamental building block viz. the “bit” 
can be either “0” or “1” at a given time but never both (!) at the same time. In practice, it is realized 
by making tiny transistors in the IC “on” (saturated) or “off” (cut-off). No transistor can be both on 
and off at the same time! Imagine a computer which uses 2-bit “words” where the possible words are 
“00”, “01”, “10” and “11”. Today’s computer performs operation on these words one at a time but in 
a quantum computer, these words can exist at least in principle in a “superposed” state of all. An 
operation performed on this special state would virtually act on all the four words simultaneously and 
this is a direct advantage in terms of the time required to perform a computation. It has been 
demonstrated by Peter Shor (1994) that to factorise a number having 400 digits by using today’s 
computational methods would take time more than the age of known universe but by using quantum 
algorithm, it would merely take 3 years. Following graph depicts this advantage as worked out by IBM: 
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In an another algorithm put forward by Grover (1996), it was shown that time to search a specific 

entry in a database consisting of “N” entries would take “√N ” trials by using quantum algorithm 
whereas it normally takes “N/2” trials by using today’s methods of database search. The advantage 
would be very clear for larger and larger values of N. 

 

 Qubit and Dirac Notaions 
A qubit is the basic unit in a quantum computer (the same way bit is to today’s classical computers). 
However, the qubit can be represented by a multiple ways e.g. ground state (0) and excited state (1) 
of an ion, electron/nucleon spin state up (1) or down (0), photon left polarized (1) or right polarized 
(0) etc. accordingly, there is a variety of hardware. In quantum mechanics, these base states are 
represented by vectors in a 2n dimentional space where n is the size of the computer word. The qubit 
with two possible states (0 and 1) is represented as: 

|ψ⟩ = a|0⟩ + b|1⟩ 
A combination of such qubits in superposed state will also be in a superposed state. Under this 
advantage, an operation performed would work on all the possible outcomes simultaneously as 
shown in figure below. 
 

 
 
For example, in a three-qubit system, there are total 8 outcomes possible so a quantum algorithm 
works on all these 8 possible outcomes unlike a classical computer, which works on one outcome at 
a time. Here, the notation | ⟩ is called as “ket” vector and it is basically a column matrix. It is popularly 
called as Dirac’s notation. The output is probabilistic and the probability amplitude in this example 
will be a2 + b2 for a partcular output.  
 

 Quantum hardware 
There are a number of models proposed for realizing the potentials of quantum computing. The main 
objective is to hold the quantum superposition. Following are some of the models: 
1. Quantum dot: a quantum dot consists of an electron trapped in a cage of atoms. Such electoren 

possesses discrete energy levels. The ground state and excited state of this electron are regarded 
as logic 0 and 1 while a laser source is used as a gate (control). 

2. Ion trap: it uses some ions such as Ca. The Ca atom/ion in its ground state and metastable state is 
interpreted as logic 0 and 1 respectively. 

3. NMR: in this, qubits are represented by nuclear spin states using nuclei of certain elements. A 
magnetic field is used as gate. 
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 Classical vs. Quantum computers 

Classical Computer Quantum Computer 

Uses semiconductor-based CMOS logic gates May use atomic, electronic, nuclear or photonic 
properties 

ON/OFF state of CMOS transistor determines 
logic 1/0 

Logic 1/0 represented by spin up/down, ground 
state/excited state, right/left polarization etc. 

Bit can be 1 or 0 at a specific time Bit (qubit) can be both 1 and 0 at a specific time 

Processor executes bit by bit operation Processor operates on all bits simultaneously 
 

 Quantum computer – potentials and challenges 
In principle, computing machines based on quantum algorithms are far more superior to today’s 

state of the art machines based on “classical” operations. The advantages are clear when the data 
sizes are huge. The major sectors which have been considered include cryptography, big data analysis, 
astronomical computations, weather models, finance and e-commerce. The main challenge in 
developing a quantum computer is “decoherence”. In simple words, decoherence is the loss of state 
of superposition (quantum entanglement) of qubits. Such a state can be lost due to a measurement 
performed on the system. Another problem is to interpret the probabilistic outcome of any 
measurement.  Here, the main challenge is to develop suitable error correcting codes for the output. 

---------------------------------------------------------------------------- 


