Equilibrium of Force System Ex. 3.1 A beam AB is hinged at end A and roller supported at end B. It is acted upon by loads as shown. Find the support reactions. #### Solution: Applying Conditions of Equilibrium (COE) to the beam AB $$\begin{split} & \sum F_X = 0 \quad \to + \, ve \\ & H_\Lambda + 12 \, \cos \, 30 = 0 \\ & H_\Lambda = -10.39 \, \, kN \\ & H_\Lambda = 10.39 \, \, kN \leftarrow \\ & \sum F_Y = 0 \quad \uparrow \, + \, ve \\ & V_\Lambda - 4 \, -12 \, \sin \, 30 \, - \, 10 \, - \, 10 \, + \, 17.75 = 0 \\ & V_\Lambda = 12.25 \, \, kN \, \uparrow \end{split}$$ Adding vectorially the components H_{Λ} and V_{Λ} , the reaction $R_{\Lambda} = 16.06 \text{ kN } \theta = 49.69^{\circ}$ Ans. Note: Hinge reaction answers may also be written as $H_A = 10.39 \text{ kN} \leftarrow$, $V_A = 12.25 \text{ kN} \uparrow$ Ex. 3.2 The beam AB is loaded by forces and couples as shown. Find the reaction force offered by the supports to keep the system in equilibrium. Ans. Adding vectorially the components H_A and V_A the reaction $R_A = 19.74 \text{ kN}, \theta = 54.2^{\circ}$ **Ex. 3.7** A circular roller of weight 1000 N and radius 20 cm hangs by a rope AB of length 40 cm and rests against a smooth vertical wall at C as shown. Determine the tension in the rope and reaction at C. The roller is supported by a smooth surface at C and a rope AB. Let R_C be the reaction at C and T_{AB} be the tension in the rope. $$\cos\theta = \frac{20}{40} \quad \therefore \quad \theta = 60^{\circ}$$ Applying COE to roller $$\Sigma F_x = 0 \rightarrow + ve$$ $R_C - T_{AB} \cos 60 = 0$ $\therefore R_C - 1154.7 \cos 60 = 0$ or $R_C = 577.35 \text{ N} \dots \text{Ans.}$ 1000 N Ex. 3.8 A wheel of radius 100 mm and weight 200 N needs to be pulled over a 25 mm high kerb by applying a force P on a rope attached at the centre of the wheel. Find the minimum force required to do so and the corresponding angle α . **Solution:** The wheel gets a reaction R_A from smooth surface at A and reaction R_B from edge at B. For the condition that the wheel needs to be pulled over the obstruction, it would loose contact at A and hence $R_A = 0$ Applying COE $$\sum F_x = 0$$ P cos $\alpha - R_B$ cos 48.59 = 0(1) $$\sum F_y = 0$$ P sin α + R_B sin 48.59 - 200 = 0 (2) From geometry $$\sin \theta = \frac{75}{100}$$ $$\therefore \theta = 48.59^{\circ}$$ Eliminating R_B from equation (1) and (2) we get $$P \sin \alpha + 1.134 P \cos \alpha - 200 = 0$$ or $$P = \frac{200}{\sin \alpha + 1.134 \cos \alpha}$$(3) For minimum value of P, $$\frac{dP}{d\alpha} = 0$$ \therefore $\frac{dp}{d\alpha} = \frac{-200}{(\sin \alpha + 1.134 \cos \alpha)^2} \times (\cos \alpha - 1.134 \sin \alpha) = 0$ Substituting value of α in equation (3) Ex. 3.9 A uniform rod of weight W and length 0.8 m is held in equilibrium with one end resting against a smooth vertical wall, while the other end is supported by a rope. Determine the length L of the rope to be used. **Solution:** Figure shows the FBD of the rod AB. The external supports for the rod are - a smooth surface at B, giving reaction R_B ⊥ to the smooth surface. - a rope support at A, giving tension reaction force T. The weight W acts through the rod's C.G. Since the system has three forces in equilibrium, the forces should be concurrent. Let M be the point of concurrence of R_B, T and W. - Δ CAB being similar to Δ MAG \therefore MG = 0.2 m - \therefore In \triangle BMG \angle B = 30° In \triangle ABC \angle B = 120°. Now using cosine rule $$L^2 = (0.8)^2 + (0.4)^2 - 2 \times 0.8 \times 0.4 \cos 120$$ \therefore L = 1.058 m Ans. # Lami's Theorem Lami's theorem deals with a particular case of equilibrium involving three forces only. It states "If three concurrent forces act on a body keeping it in equilibrium, then each force is proportional to the sine of the angle between the other two forces". $$\frac{T_1}{\sin \alpha} = \frac{T_2}{\sin \beta} = \frac{W}{\sin \theta}$$ **Proof:** Let P, Q and R be the three concurrent forces in equilibrium as shown in Fig. 3.19 (a). Applying sine rule we get $$\frac{P}{\sin(180-\alpha)} = \frac{Q}{\sin(180-\beta)} = \frac{R}{\sin(180-\theta)}$$ Figure shows beam AB hinged at A and roller supported at B. The L shaped portion DEF is an extended part of beam AB. For the loading shown, find support reactions. 25 kN 20 kN 2 m S FBD **Solution:** The beam AB is in equilibrium. It is supported by a hinge at A and roller at B. The FBD is shown. COE – Beam AB $\sum M_A = 0 \quad \bullet + ve$ $= (20 \times 2) = (25 \times 4) = (3)$ $$-(20\times2)-(25\times4)-(30\sin40\times8)+(30\cos40\times1.5)+(R_{\rm B}\times10)=0$$ $\therefore R_{\rm B} = 25.98 \, \rm kN$ Or $$R_B = 25.98 \, \text{kN} \, \uparrow$$ Ans. Find the reactions at the supports of the beam AB loaded as shown. **Solution:** The beam AB is in equilibrium. It is supported by a roller at A and a hinge at B. The FBD is shown. $$\Sigma F_y = 0 \uparrow + ve$$ $$R_A - 6 - 3\sin 45 - 8 + 8.622 = 0$$ $$\therefore R_A = 7.5 \text{ kN}$$ Or $$R_A = 7.5 \text{ kN} \uparrow \dots \text{Ans.}$$ Block A of weight 100 N and B of weight 200 N are connected to each other as shown. They are held in equilibrium on a smooth slope and a rope tied parallel to the slope. Find external support reactions and tension in the connecting rope (2). **Solution:** The system has two bodies viz blocks A and B which are externally supported by smooth surfaces offering reactions R_A and R_B and a rope (1) giving reaction T_1 . The bodies are internally connected by rope (2). On isolating the blocks, the internal reaction tension T_2 can be seen. $$\sum F_X = 0$$ $$T_2 - 100 \sin 30 = 0$$.: $T_2 = 50 \text{ N}$... **Ans.** $$\sum F_y = 0$$ $$R_A - 100 \cos 30 = 0$$ $$R_A = 86.6 \text{ N}$$ Applying COE to block B $$\sum F_x = 0$$ $$T_1 - T_2 - 200 \sin 30 = 0$$ $$T_1 - 50 - 100 = 0$$ $T_1 = 150 \text{ N}$... **Ans.** $$\sum F_v = 0$$ $$R_B - 200 \cos 30 = 0$$:: $R_B = 173.2 \text{ N}$... **Ans.** A string ABCD carries two loads P and Q. If P = 50 kN, find force Q and tensions in different portions of the string. **Solution:** Isolating joint B of the string. Let T_{AB} and T_{BC} be the tensions in the string portions AB and BC respectively. Using Lami's equation $$\frac{T_{AB}}{\sin 75} = \frac{T_{BC}}{\sin 150} = \frac{50}{\sin 135}$$ $$T_{AB} = 68.3 \text{ kN}$$ Ans. $$T_{BC} = 35.35 \text{ kN}$$Ans Now isolating joint C. Let T_{CD} be the tension in portion CD. Using Lami's equation $$\frac{35.35}{\sin 120} = \frac{T_{CD}}{\sin 105} = \frac{Q}{\sin 135}$$ $$T_{CD} = 39.43 \text{ kN}$$ Ans Two cylinders each of diameter 100 mm and each weighing 200 N are placed as shown in figure. Assuming that all the contact surfaces are smooth find the reactions at A, B and C. Solution: The system consists of two cylinders supported against three smooth surfaces at A, B and C. Let R_A, R_B and R_C be the reactions at three supports. The FBD of the system is shown. Applying COE to the system $$\sum M_{G1} = 0 \quad \bigvee + ve$$ $$-(200\times50)+(R_{C}\times86.6)=0$$ $$R_{C} = 115.47 \,\text{N}$$ or $$R_C = 115.47 \,\mathrm{N} \leftarrow$$ Ans. $$\sum \mathbf{F_y} = 0 \quad \uparrow + ve$$ $$R_B \sin 80 - 200 - 200 = 0$$ $$R_{R} = 406.17 \, \text{N}$$ or $$R_B = 406.17 \,\text{N}$$, $\theta = 80^{\circ} \, \text{...}$ Ans. $$\sum F_x = 0$$ $$R_A - R_B \cos 80 - R_C = 0$$ $$R_A - 406.17\cos 80 - 115.47 = 0$$ $$\therefore$$ R_A = 186 N or $$R_A = 186N \rightarrow$$ Ans.