
 Engineering Exploration

 OWL
 The Self-Tracking Camera

 Project Report

 F.Y. B.Tech.
 SEMESTER II 2021-22

 (COMPS)

 Team:
 1) Gaurish Baliga → 16010121010 → A1
 2) Jagjit Singh Bhumra → 16010121022 → A1
 3) Vishrut Deshmukh → 16010121043 → A2
 4) Pargat Singh Dhanjal → 16010121045 → A2
 5) Pratham Goenka → 16010421137 → H3

 1

 Introduction:
 After attending the Quantum Computing workshop organised by the

 college, we observed a major flaw in the working of webinar cameras. The
 current webinar cameras do not move AT ALL, that means that if the
 whiteboard is wide and the teacher moves on to one corner of the board,
 they won't be visible at all. To solve this problem, we decided to create a
 webinar camera that tracks the person and keeps him in focus. We plan to
 do this with the help of image processing using OpenCV and Arduino.

 Facial recognition is a very useful tool incorporated in many modern
 devices to detect human faces for tracking, biometric and to recognize
 human activities. In this project, I have used the OpenCV's Haar-Cascade
 classifiers for detecting human faces and pan/tilt servo mechanism to
 track the user's face using Arduino UNO.

 Problem Statement:
 In current classrooms, conference rooms and dance centres, the

 main problem arises due to static cameras that need to be controlled
 manually to keep a track of the speaker/performer. An automated, easy to
 use, portable and inexpensive self tracking camera is the need of the hour
 in such areas. The product needs to be light (not more than 2 kilograms)
 but sturdy and should be able to mount itself to the wall/stand on the
 table with ease. Apart from this the device needs strong connectivity in
 terms of wifi and strong motors to carry the load, i.e the camera.

 2

 Block Diagrams:

 External Working

 Internal Working

 3

 Software Used:
 1) Python:

 • Python is a high-level, interpreted, general-purpose programming
 language. Its design philosophy emphasises code readability with the use
 of significant indentation.

 • Python is dynamically-typed and garbage-collected. It supports multiple
 programming paradigms, including structured (particularly procedural),
 object-oriented and functional programming.

 • It is often described as a "batteries included" language due to its
 comprehensive standard library.

 2) Arduino C++ :
 • C++ is a general-purpose programming language created by Danish

 computer scientist Bjarne Stroustrup as an extension of the C
 programming language, or "C with Classes".

 • The language has expanded significantly over time, and modern C++ now
 has object-oriented, generic, and functional features in addition to
 facilities for low-level memory manipulation.

 • It is almost always implemented as a compiled language, and many
 vendors provide C++ compilers, including the Free Software Foundation,
 LLVM, Microsoft, Intel, Oracle, and IBM, so it is available on many
 platforms.

 3) OpenCV Module:
 • OpenCV is the huge open-source library for the computer vision, machine

 learning, and image processing and now it plays a major role in real-time
 operation which is very important in today’s systems.

 • By using it, one can process images and videos to identify objects, faces,
 or even handwriting of a human. When it integrated with various libraries,
 such as NumPy, python is capable of processing the OpenCV array
 structure for analysis.

 • To Identify image pattern and its various features we use vector space and
 perform mathematical operations on these features.

 4

 4) Haar-Cascade Classifier:
 • Haar cascades, first introduced by Viola and Jones in their seminal 2001

 publication, Rapid Object Detection using a Boosted Cascade of Simple
 Features, are arguably OpenCV’s most popular object detection algorithm.

 • Sure, many algorithms are more accurate than Haar cascades (HOG +
 Linear SVM, SSDs, Faster R-CNN, YOLO, to name a few), but they are still
 relevant and useful today.

 • One of the primary benefits of Haar cascades is that they are just so fast
 — it’s hard to beat their speed.

 5

 Hardware Used:
 1) Arduino Uno:

 • Arduino UNO is a microcontroller board based on the ATmega328P . It has
 14 digital input/output pins (of which 6 can be used as PWM outputs), 6
 analog inputs, a 16 MHz ceramic resonator, a USB connection, a power
 jack, an ICSP header and a reset button.

 • It contains everything needed to support the microcontroller; simply
 connect it to a computer with a USB cable or power it with a AC-to-DC
 adapter or battery to get started. You can tinker with your UNO without
 worrying too much about doing something wrong, worst case scenario
 you can replace the chip for a few dollars and start over again.

 2) 9V SG90 Servo Motors :
 • Tiny and lightweight with high output power.
 • Servo can rotate approximately 180 degrees (90 in each direction), and

 works just like the standard kinds but smaller. You can use any servo
 code, hardware or library to control these servos.

 • Good for beginners who want to make stuff move without building a motor
 controller with feedback & gear box, especially since it will fit in small
 places. It comes with a 3 horns (arms) and hardware.

 3) 1080p USB Webcam
 • A webcam is a video camera that feeds or streams an image or video in

 real time to or through a computer network, such as the Internet.
 • Webcams are typically small cameras that sit on a desk, attach to a user's

 monitor, or are built into the hardware.
 • Webcams can be used during a video chat session involving two or more

 people, with conversations that include live audio and video.

 4) Breadboard & Jumper Cables:
 • A breadboard, solderless breadboard, protoboard, or terminal array board

 is a construction base used to build semi-permanent prototypes of
 electronic circuits.

 • A jump wire is an electrical wire, or group of them in a cable, with a
 connector or pin at each end, which is normally used to interconnect the
 components of a breadboard or other prototype or test circuit, internally or
 with other equipment or components, without soldering.

 6

 How it Works :

 Facial detection helps identify and localise human faces, and ignores any background
 objects in the surroundings. The OpenCV module uses a Haar-Cascade classifier, where
 each frame of the video is passed through stages of classifiers and if the frame ia accepted
 by all the classifiers, the face is detected, otherwise that particular frame is discarded, i.e
 the face is not detected.

 The Python OpenCV program returns the cartesian coordinates of the image upon
 detection, along with its height and width. From these coordinates, the center-coordinates
 of the image can be calculated using ‘ x+width/2 ’ and ‘ y+height/2 ’.

 These coordinates are passed to the Arduino UNO using the pyserial library when the face
 is detected. The servos connected to the Arduino provide a pan/tilt mechanism where the
 camera is connected to one of the servos. When the coordinates of the face are away from
 the center, then the servo will align degree by degree (increment or decrement) to bring it
 towards the center of the screen.

 Detecting the face
 We have used ' haarcascade_frontalface_default.xml ' which is a pre- trained model for
 detecting human faces and can be downloaded from their repository on GitHub (here).
 Upon downloading, the xml file can be loaded using cv2.CascadeClassifier() function.

 The function used for face detection is cv2.CascadeClassifier.detectMultiScale() with the
 scale-factor value and minNeighbour values set as needed (will differ according to
 webcam). This returns the cartesian coordinates of the image, along with the height and
 width. Increasing the minNeighbour can improve facial detection, but it sacrifices
 execution speeds, which would lead to delayed responses from the servos..

 7

https://github.com/opencv/opencv/tree/master/data/haarcascades

 Calculating the Coordinates
 The OpenCV program returns the face coordinates in terms of pixel values. The video
 resolution should be set to camera resolution. The coordinates describe the top-left pixel
 values(x and y) along with the height and width. We have used the center-coordinates of
 the face for reference, which can be calculated using ‘ x+width/2 ’ and ‘ y+height/2 ’. These
 coordinates are sent to the arduino for changing the angle of the camera.

 The square in the center of the frame in white describes the region within which the green
 dot must be. If it is outside the square when the face is moved, the servo will align the
 camera to bring it inside the region.

 Sending Serial data to Arduino
 This was challenging since sending the coordinates sequentially to the Arduino had slow
 response times. After spending some time figuring it out, we began looking for similar
 projects online until we found this project (here). We came to know about the Serial
 function Serial.parseInt() which takes integer inputs from an incoming serial of bytes
 (check here). Our method of sending the serial data is similar to the one used in that
 project.

 Python sends the center-coordinates in a single string. For example: "X110Y190", the
 value 110 after X represents center x-coordinate and 190 represents center-y coordinate.

 8

https://create.arduino.cc/projecthub/WolfxPac/face-tracking-using-arduino-b35b6b
https://www.arduino.cc/reference/en/language/functions/communication/serial/parseint/

 Arrangement of Servo
 We have attached the horizontal-moving servo on the shaft of the vertical-moving servo in
 which the camera is mounted. All the attachments are using simple rubber bands and some
 electrical tape (It is not recommended as we made use of existing material available to us,
 for a finished product it is recommended to use more permanent methods, and to solder
 wires instead of using jumper cables and breadboard).

 Libraries and Installations
 This project requires pyserial and OpenCV libraries which we downloaded using pip. We
 used similar or higher versions of Python (3.8) and OpenCV (4.4.0). We also made sure
 that the XML file for face detection is saved in the same directory as the python script.

 The python script also required some modification by entering the correct COM port of the
 Arduino before execution (whenever it was ejected and reconnected).

 As we are using 2 servos for tracking, an additional 9V supply was recommended (by
 means of an adapter) to the Arduino to provide sufficient current for both the servos. Since
 we didn’t have it already, we made it with just the Arduino’s 5V supply. In the absence of
 the extra power supply though, we noticed the motors wobbling when trying to move the
 camera.

 9

 Code:

 Python:
 import cv2
 import serial,time
 face_cascade= cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
 cap=cv2.VideoCapture(0)
 ArduinoSerial=serial.Serial('/dev/cu.usbmodem11301',9600,timeout=0.1)

 while True:
 i = True
 ret, frame= cap.read()
 frame=cv2.flip(frame,1) # vertical flip
 gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
 faces= face_cascade.detectMultiScale(gray,1.1,8) #detect the face
 for x,y,w,h in faces:

 # sending coordinates to Arduino
 coordinates='X{0:d}Y{1:d}'.format((x+w//2),((y+h//2)))
 if i == True:

 print(coordinates)
 ArduinoSerial.write(coordinates.encode('utf-8'))
 i = False

 cv2.rectangle(frame,(x,y),(x+w,y+h),(100,255,255),1)
 cv2.imshow('img',frame)
 # press q to Quit
 if cv2.waitKey(10)&0xFF== ord('q'):

 break
 cap.release()
 cv2.destroyAllWindows()

 10

 Arduino:
 #include <Servo.h>
 Servo x, y;
 int width = 640, height = 480; // Camera resolution
 int xPos = 90, yPos = 90; // initial positions of Servos

 void setup()
 {
 Serial.begin(9600);
 x.attach(9);
 y.attach(10);
 x.write(xPos);
 y.write(yPos);

 }

 const int angle = 1; // Change in degree

 void loop()
 {
 if (Serial.available() > 0)
 {

 int x_mid, y_mid;
 if (Serial.read() == 'X')
 {

 x_mid = Serial.parseInt(); // Get x coordinate from arduino
 if (Serial.read() == 'Y')

 y_mid = Serial.parseInt(); // Get y coordinate from arduino
 }

 // Bring servo to the center tiny square
 if (x_mid > width / 2 + 35)

 xPos += angle;
 if (x_mid < width / 2 - 35)

 xPos -= angle;
 if (y_mid < height / 2 + 35)

 yPos -= angle;
 if (y_mid > height / 2 - 35)

 yPos += angle;

 // if outside y servo is out of its range
 if (yPos >= 180)

 yPos = 180;
 else if (yPos <= 0)

 yPos = 0;

 // Writing the calculated values
 x.write(xPos);
 y.write(yPos);

 }
 }

 11

 Schematic:

 12

 Advantages and Future Applications:

 ● We have achieved facial tracking using openCV which keeps the camera
 stable when the user’s face is not towards the camera.

 ● The OWL has 360° range of motion which allows tracking around the entire
 workspace/classroom.

 ● It has a simple USB interface which increases the connectivity
 ● The design is very stable to reduce the imbalance and wobble due to the

 momentum generated by movement of the camera.
 ● The setup despite being stable is very much portable with a new weight og

 just around 660 grams,
 ● The Owl is very easy to use with just a click of a button. There is no need to

 make several tweaks to make it work perfectly.
 ● The software is also lightweight with easy and quick setup.
 ● The estimated selling price of our product is very low compared to other

 competitors present in the market as of now.

 GitHub & Presentation Links:
 Github :
 Pargat-Dhanjal/Smart-Camera: Engineering Exploration project for FY BTech
 (github.com)
 Owl-Smart Webcam (pargat-dhanjal.github.io)

 Presentation :
 OWL Smart Camera Presentation (canva.com)
 (Gantt Chart and Survey Reports are in the PPT given above)

 13

https://github.com/Pargat-Dhanjal/Smart-Camera
https://github.com/Pargat-Dhanjal/Smart-Camera
https://pargat-dhanjal.github.io/Owl-Smart-Camera/
https://www.canva.com/design/DAFIoYSfPgQ/umH16Yi6D4CZayDVPyvZ9w/view

 Conclusion:

 We would like to thank all of our teachers for Engineering Exploration for
 helping us to make the most out of this course and helping us with our
 final project. Your support has surely made us grow and become capable
 of developing such projects while coordinating as a team. The OWL
 wouldn’t have been possible without your help and required materials from
 our esteemed college. Such projects help our community in day to day
 tasks which as students is our responsibility to develop. We hope that the
 OWL becomes a successful product one day under your guidance.
 Thank you for giving us this opportunity.

 14

