

K. J. Somaiya College of Engineering, Mumbai – 400 077 (A Constituent College of Somaiya Vidyavihar University) Dept. of Science and Humanities F.Y. B. Tech. Semester –I (2021-22) Applied Mathematics-II IA-2

60

Applications of Taylor's Theorem in Biology

Taylor series is a function of an infinite sum of terms in increasing order of degree. Taylor series of polynomial functions is also a polynomial. It is used to evaluate the value of a whole function in each point if the functional values and derivatives are identified at a single point.

$$f(x) = f(a) \frac{f'(a)}{1!} (x - a) + \frac{f''(a)}{2!} (x - a)^2 + \frac{f^{(3)}(a)}{3!} (x - a)^3 + \dots$$

Also, when the function is centered at a zero point; this is a special case called as Maclaurin series . i.e when, if a=0

Where will we use this ?

Cell fate determination is an important aspect of normal development and disease. It directly affects tissues human health. So, we have proposed a polynomial model to predict cell fate based on Taylor series. Since there are many genes, we used two types of trait selection methods, i.e. correlation-based and apoptosispathway-based. Then, polynomials of varying degrees were used to refine the cell fate prediction function. Name : Pargat Singh Roll No : 16010121045 Div. : A Batch: A2

But where and how will we use this in biology?

No worries! I will explain you how we take advantage of Taylor's Theorem in Medical Science.

So, to build a model to predict cell fate based on single-cell gene expression data, where a function is used to demonstrate their relationship, consider cell fate as the probability of cell death. We now express it as a Taylor series under the condition of being infinitely differentiable at a fixed point; we applied this theory and directly used different degree polynomials to fit the cell fate prediction function

Now that is Smart!

Method

Suppose we are given three cell fate related genes A, B, and C, with the corresponding expression levels of x_A , x_B , and x_C , respectively. Suppose that the three genes are independent of each other, then P can be represented as:

 $P = f(x_A) + g(x_B) + h(x_C),$

Where *f*, *g*, and *h* are three arbitrary functions. If $f(x_A)$ is infinitely differentiable at *a*, we can expand $f(x_A)$ with Taylor series as follows:

 $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x_A - a)^n = f(a) + \frac{f'(a)}{1!} (x_A - a) + \frac{f''(a)}{2!} (x_A - a)^2 + \cdots.$

Here, $f^{(n)}(a)$ denotes the *n*-th derivative of $f(x_A)$ at *a*. Similarly, $g(x_B)$ and $h(x_C)$ can be represented with Taylor series, respectively.

As such, *P* can be rewritten as:

$$egin{aligned} P &= \sum\limits_{n=0}^{\infty} \left(k_{An} x_A^n + k_{Bn} x_B^n + k_{Cn} x_C^n
ight) \ &= \sum\limits_{n=1}^{\infty} \left(k_{An} x_A^n + k_{Bn} x_B^n + k_{Cn} x_C^n
ight) + b, \end{aligned}$$

where k_{An} , k_{Bn} and k_{Cn} are polynomial coefficients, and *b* is a constant.

Results

Cell fate prediction based on genes selected by correlation analysis

Prediction accuracies of cell death by using different degree polynomial models (linear, quadratic and cubic

