AREA

Monday, May 31, 2021 11:30 AM

- (a) The area enclosed by two plane curves $y = f_1(x)$ and $y = f_2(x)$ intersecting in A(a, c) and B(b, d) is $A = \int_a^b \int_{f_1(x)}^{f_2(x)} dx \, dy$
- (b) The area enclosed by two plane curves $r = f_1(\theta)$ and $r = f_2(\theta)$ intersecting in $A(r_1, \alpha)$ and $B(r_2, \beta)$ is $A = \int_{\alpha}^{\beta} \int_{f_1(\theta)}^{f_2(\theta)} r \, d\theta \, dr$

SOME SOLVED EXAMPLES:

1. Find by double integration the area enclosed $y^2 = x^3$ and y = x**Solution:** The two curves intersect at the origin O(0, 0) and A(1, 1)

$$2 = \pi^{3} \qquad \Rightarrow \qquad \pi^{2} = \pi^{3} \qquad \Rightarrow \qquad \pi^{3} = \pi^{3$$

Consider a strip parallel to the y –axis. on this strip y varies from $x^{3/2}$ to x. And the strip moves from 0 to 1

$$\therefore A = \int_{0}^{1} \int_{x^{3/2}}^{x} dy dx$$

= $\int_{0}^{1} \left(\mathcal{I} \right)_{y^{3/2}}^{y} dy = \int_{0}^{1} \left(\mathcal{I} - \mathcal{I} \right)_{y^{3/2}}^{y} dy = \left(\frac{\mathcal{I}}{2} - \frac{\mathcal{I}}{5/2} \right)_{0}^{1} = \frac{1}{10}$

у У

2. Find the area between parabola $y = x^2 - 6x + 3$ and the line y = 2x - 9**Solution:** We have $y = (x - 3)^2 - 6$ i.e. $y + 6 = (x - 3)^2$.

> It is a parabola with vertex at (3, -6) and opening upwards. The line intersects the parabola where $x^2 - 6x + 3 = 2x - 9$ i.e. $x^2 - 8x + 12 = 0$ i.e. (x - 6)(x - 2) = 0 i.e. when x = 6, x = 2. When x = 6, y = 12 - 9 = 3; when x = 2, y = 4 - 9 = -5.

The points of intersection are B(6,3), A(2,-5)

To find the area consider a strip parallel to the y -axis. On this strip y varies from $y = x^2 - 6x + 3$ to y = 2x - 9. Then x varies from x = 2 to x = 6

$$\begin{array}{l} \therefore A = \int_{x=2}^{6} \int_{y=x^{2}-6x+3}^{2x-9} dy dx \\ = \int_{0}^{6} \left(\begin{array}{c} y \end{array} \right)_{y=2}^{2y-9} dy = \left(\begin{array}{c} 6 \\ (2y-9-y^{2}+6y-3) \end{array} \right) dy \end{array}$$

$$= \int_{2}^{6} (3)_{\pi^{2}-6\pi+3}^{2\pi-9} d\pi = \int_{2}^{6} (2\pi-9-\pi^{2}+6\pi-3) d\pi$$

$$= \int_{2}^{6} (-\pi^{2}+8\pi-12) d\pi = \left(\frac{-\pi^{3}}{3}+\frac{8\pi^{2}}{2}-12\pi\right)_{2}^{6}$$

$$= \frac{-6^{3}}{3}+4(6)^{2}-(2\times6)+\frac{2^{3}}{3}-4(2)^{2}+(12\times2)$$

$$= \frac{32}{3}$$

3. Sketch the region bounded by the curves xy = 16, y = x, x = 8 and y = 0. Express the area of this region as a double integral in two ways

Solution: The curve xy = 16 is a ractangular hyperbola.

A

- y = x is a line passing through the origin and equally inclined to the axes.
- y = 0 is the x -axis and x = 8 is a line parallel to the y -axis.

$$y = x$$

$$y = x$$

$$y = x$$

$$y = x$$

$$x = 8$$

$$y = x$$

$$x = 8$$

$$y = 16$$

$$y = x$$

$$x = 8$$

$$y = 16 = 3$$

$$x = 4$$

$$y = 4$$

$$y = 4$$

$$x = 4$$

$$y = 4$$

Thus, the region is OABC

The vertices of the figure are O(0, 0), C(8, 0), B(8, 2), A(4, 4). If we drop the perpendicular AM, then M is (4, 0)If we take a strip parallel to the y –axis, then the area divided into

two regions OMA and AMCB

$$\therefore \operatorname{Area} = \int_{0}^{4} \int_{y=0}^{x} dx dy + \int_{4}^{8} \int_{y=0}^{16/x} dx dy$$

$$y = 2$$

$$B = (8, 2)$$

$$AMB \rightarrow Y = x$$

$$M \xrightarrow{A} \xrightarrow{B} \xrightarrow{C} y = 0 \rightarrow x$$

$$Print of intersection of my=16 and m=8$$

$$y = 2$$

$$B = (8, 2)$$

$$AMB \rightarrow Y = x$$

$$OMBC \rightarrow Y = x$$

$$From x = 8$$

If we take a strip parallel to the x –axis, then the area is divided into two regions *OMBC* and *MBA* where *M* is the point of intesection of a line parallel to the x –axis through *B*

$$\therefore \operatorname{Area} = \int_0^2 \int_{x=y}^8 dx dy + \int_2^4 \int_{x=y}^{y/16} dx dy \qquad (Evaluation can be asked).$$

4. Find by double integration the area of the smaller region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the line $\frac{x}{a} + \frac{y}{b} = 1$ **Solution:** The ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the line $\frac{x}{a} + \frac{y}{b} = 1$ are shown in the figure

Solution. The endpert
$$\frac{1}{a^2} + \frac{1}{b^2} = 1$$
 and the line $\frac{1}{a} + \frac{1}{b} = 1$ are shown in the ingute

$$\frac{\pi}{a} + \frac{\pi}{b} = 1 \quad \Rightarrow \frac{\pi}{b} = 1 - \frac{\pi}{a} \Rightarrow f = b \left(1 - \frac{\pi}{a}\right)$$

$$= \frac{b}{a} (a - \pi)$$

$$\frac{\pi}{a} + \frac{\pi}{b} = 1 \quad \Rightarrow \frac{\pi}{b} = 1 - \frac{\pi}{a} \Rightarrow f = b \left(1 - \frac{\pi}{a}\right)$$

$$= \frac{b}{a} (a - \pi)$$

$$\frac{\pi}{a^2} + \frac{\pi}{b^2} = 1 \Rightarrow \frac{\pi}{b^2} = 1 - \frac{\pi}{a^2} \Rightarrow f^2 = \frac{b^2}{a^2} (a^2 - \pi^2)$$

$$\frac{\pi}{a^2} + \frac{\pi}{b^2} = 1 \Rightarrow \frac{\pi}{b^2} = 1 - \frac{\pi}{a^2} \Rightarrow f^2 = \frac{b^2}{a^2} (a^2 - \pi^2)$$

$$\frac{\pi}{a^2} + \frac{\pi}{b^2} = 1 \Rightarrow \frac{\pi}{b^2} = 1 - \frac{\pi}{a^2} \Rightarrow f^2 = \frac{b^2}{a^2} (a^2 - \pi^2)$$

$$\frac{\pi}{a^2} + \frac{\pi}{b^2} = 1 \Rightarrow \frac{\pi}{b^2} = 1 - \frac{\pi}{a^2} \Rightarrow f^2 = \frac{b^2}{a^2} (a^2 - \pi^2)$$

$$\frac{\pi}{a^2} + \frac{\pi}{b^2} = 1 \Rightarrow \frac{\pi}{b^2} = 1 - \frac{\pi}{a^2} \Rightarrow f^2 = \frac{b^2}{a^2} (a^2 - \pi^2)$$

$$\frac{\pi}{a^2} + \frac{\pi}{b^2} = 1 \Rightarrow \frac{\pi}{b^2} = 1 - \frac{\pi}{a^2} \Rightarrow f^2 = \frac{b^2}{a^2} (a^2 - \pi^2)$$

$$\frac{\pi}{a^2} + \frac{\pi}{b^2} = 1 \Rightarrow \frac{\pi}{b^2} = 1 - \frac{\pi}{a^2} \Rightarrow f^2 = \frac{b^2}{a^2} (a^2 - \pi^2)$$

$$\frac{\pi}{a^2} + \frac{\pi}{b^2} = 1 \Rightarrow \frac{\pi}{b^2} = 1 - \frac{\pi}{a^2} \Rightarrow f^2 = \frac{b^2}{a^2} (a^2 - \pi^2)$$

$$\frac{\pi}{a^2} + \frac{\pi}{b^2} = 1 \Rightarrow \frac{\pi}{b^2} = 1 - \frac{\pi}{a^2} \Rightarrow f^2 = \frac{b^2}{a^2} (a^2 - \pi^2)$$

$$\frac{\pi}{a^2} + \frac{\pi}{b^2} = 1 \Rightarrow \frac{\pi}{b^2} = 1 - \frac{\pi}{a^2} \Rightarrow f^2 = \frac{b^2}{a^2} (a^2 - \pi^2)$$

$$\frac{\pi}{a^2} + \frac{\pi}{b^2} = 1 \Rightarrow \frac{\pi}{b^2} = 1 - \frac{\pi}{a^2} \Rightarrow f^2 = \frac{b^2}{a^2} (a^2 - \pi^2)$$

$$\frac{\pi}{b^2} = \frac{b}{a} (1 - \frac{\pi}{a^2} - \pi^2)$$

$$\frac{\pi}{b^2} = \frac{\pi}{b^2} = \frac{\pi}{b^2} = \frac{\pi}{b^2} = \frac{\pi}{a^2} =$$

5. Using double integration find the area bounded by the parabolas $x = y^2$, $x = 2y - y^2$ **Solution:** The parabola $y^2 = x$ has vertex at the origin.

The parabola $y^2 - 2y = -x$ i.e. $(y - 1)^2 = -(x - 1)$ has vertex at (1, 1). The two parabolas intersect where $y^2 = 2y - y^2$ i.e. 2y(y - 1) = 0 \therefore y = 0, y = 1The points of intersection are (0, 0), (1, 1)

Consider a strip parallel to the x -axis. On this strip x varies from y^2 to $2y - y^2$ and the strip moves from y = 0 to y = 1Hence $A = \int_{0}^{1} \int_{0}^{2y-y^2} dx dy$

Hence,
$$A = \int_{0}^{1} \int_{y^{2}}^{2y-y^{2}} dy = \int_{0}^{1} (2y-2y^{2}) dy = (y^{2}-2y^{3})^{1} = \frac{1}{3}$$

$$= \int_{0}^{2y-y} \left(\frac{y}{y^{2}} - \frac{y^{2}}{y^{2}} - \frac{y^{2}}{y^{2}} \right) \left(\frac{2y-2y^{2}}{y^{2}} - \frac{y^{2}}{y^{2}} - \frac{y^{2}}{y^{2}} \right)^{1} = \frac{1}{3}$$

6. Find by double integration the area included between the curves $y = 3x^2 - x - 3$ and $y = -2x^2 + 4x + 7$ **Solution:** We have $y = 3x^2 - x - 3$

i.e. $y + 3 + \frac{1}{12} = 3\left(x^2 - \frac{1}{3}x + \frac{1}{36}\right)$ i.e. $y + \frac{37}{12} = 3\left(x - \frac{1}{6}\right)^2$ which is a parabola with vertex at (1/6, -37/12) and opening upwards and $y = -2x^2 + 4x + 7$ i.e. $y - 7 = -2(x^2 - 2x)$ i.e. $y - 9 = -2(x - 1)^2$ which is a parabola with vertex at (1, 9) and opening downwards The two curves intersect when $3x^2 - x - 3 = -2x^2 + 4x + 7$ $\therefore 5x^2 - 5x - 10 = 0$ $\therefore x^2 - x - 2 = 0$ $\therefore (x - 2)(x + 1) = 0$ $\therefore x = 2$ or x = -1When x = -1, y = +1 and when x = 2, y = 7.

Thus, the two curves intersect in (-1, 1) and (2, 7)

Now, consider a strip parallel to the y -axis. On this strip y varies from $3x^2 - x - 3$ to $-2x^2 + 4x + 7$. Then x -varies from x = -1 to x = 2

$$\therefore A = \int_{-1}^{2} \int_{3x^2 - x - 3}^{-2x^2 + 4x + 7} dy dx$$

$$= \int_{-1}^{2} \left[J \right]_{3m^2-m-3}^{-2m^2+Um+7} d\pi$$

$$= \int_{-1}^{2} \left(-2m^{2} + 4m + 7 - 3m^{2} + m + 3 \right) dm$$

$$= \int_{-1}^{-1} (-5\pi^{2} + 5\pi + 10) d\pi$$

$$z \left(-\frac{5\pi^{3}}{3} + \frac{5\pi^{2}}{2} + 10\pi\right)_{-1}^{2} = \left(-\frac{40}{3} + 10\pi^{2}20\right) - \left(\frac{5}{3} + \frac{5}{2} - 10\right)$$
$$= -15 + 40^{-5}\frac{5}{2} = -\frac{45}{2}$$

7. Find the larger of the two areas into which the circle $x^2 + y^2 = 16a^2$ is divided by the parabola $y^2 = 6ax$ Solution: We shall first find the common area *AOBCA*.

$$\mathcal{X} \rightarrow \mathcal{P}$$

 $\mathcal{X} \rightarrow \mathcal{P}$
 $\mathcal{Y} \rightarrow \mathcal{P}$
 \mathcal{Y}

The points of intersection are given by $x^{2} + 6ax - 16a^{2} = 0$ $\therefore (x + 8a)(x - 2a) = 0$ $\therefore x = 2a$ $\therefore y^2 = 12a^2 \ \therefore y = 2\sqrt{3} \cdot a$ Hence, *B* is $(2a, 2\sqrt{3} \cdot a)$: Area = $2 \int_0^{2\sqrt{3} \cdot a} \int_{x=y^2/6a}^{\sqrt{16a^2 - y^2}} dx dy$ $= 2 \int_{16a^2 - y^2}^{2\sqrt{3}a} \left(\varkappa \right)_{y^2} dy$ 7,534 $= 2 \int \left(\sqrt{16a^2 - y^2} - \frac{y^2}{6a} \right) dy$ \bigcirc $= 2 \left[\frac{y}{2} \sqrt{\frac{16a^2 - y^2}{2} + \frac{16a^2}{2}} \operatorname{Srn}^{-1} \left(\frac{y}{4a} \right) - \frac{y^3}{18a} \right]_{18a}^{2\sqrt{3}a}$ $= \left[2 \int_{3a} \cdot 2a + 16a^{2} \sin^{2}\left(\frac{J_{3}}{2}\right) - \frac{24J_{3}}{9a} \cdot a^{3} \right]$ = 4 5302 + 1602 = = \$ 5302 $=\frac{4}{2}(4\pi+\sqrt{3})\alpha^{2}$

But area of the circle = $\pi 16a^2$

: Required area =
$$\pi 16a^2 - \frac{4}{3}(4\pi + \sqrt{3})a^2 = \frac{4}{3}(8\pi - \sqrt{3})a^2$$

8. Find by double integration the area common to the circles $x^2 + y^2 - 4y = 0$ and $x^2 + y^2 - 4x - 4y + 4 = 0$

Solution: The equation $x^2 + y^2 - 4y = 0$ can be written as $x^2 + (y - 2)^2 = 2^2$. Its Centre is (0, 2) and radius = 2.

> And the equation $x^2 + y^2 - 4x - 4y + 4 = 0$ can be written as $(x - 2)^2 + (y - 2)^2 = 2^2$. Its Centre is (2, 2) and radius = 2

By subtraction, we see that the circles intersect at points where x = 1

 $y^{2} + y^{2} - 4y = 0$ $y = 4 \pm \sqrt{16 - 4m^{2}}$ $= 2 \pm \sqrt{16 - 4m^{2}}$ $lowev \quad y \rightarrow 2 - \sqrt{4 - m^{2}}$ $uppev \quad y \rightarrow 2 \pm \sqrt{4 - m^{2}}$ $4 \pm \sqrt{16 - 4x^{2}}$

Consider a strip parallel to the y –axis.

Then on the circle on the left i.e. on $x^2 + y^2 - 4y = 0$ i.e. on $y = \frac{4\pm\sqrt{16-4x^2}}{2}$, y varies from $2 - \sqrt{4-x^2}$ to $2 + \sqrt{4-x^2}$

$$\begin{aligned} & \text{Required area} = 2 \text{ (area } ABC \text{)} & \text{by symmetry} \\ &= 2 \int_{1}^{2} \int_{2-\sqrt{4-x^{2}}}^{2/\sqrt{4-x^{2}}} dy dx \\ &= 2 \int_{1}^{2} \left(y \right)_{2-\sqrt{4-x^{2}}}^{2+\sqrt{4-x^{2}}} dx \\ &= 2 \int_{1}^{2} 2 \int \sqrt{y} - \sqrt{y}^{2} dx \\ &= 2 \int_{1}^{2} 2 \int \sqrt{y} - \sqrt{y}^{2} dx \\ &= 4 \left[\frac{\chi}{2} \int \sqrt{y} - \sqrt{y}^{2} + \frac{y}{2} 8\gamma n^{-1} \left(\frac{\chi}{2} \right) \right]_{1}^{2} \\ &= 4 \left[2 \cdot \frac{\pi}{2} - \left(\frac{\sqrt{3}}{2} + 2 \cdot \frac{\pi}{6} \right) \right] \\ &= 4 \left(\frac{2\pi}{3} - \frac{\sqrt{3}}{2} \right) \end{aligned}$$

9. Find the area of the cardioide $r = a(1 + \cos \theta)$ **Solution:**

For the cardioid r varies from 0 to $a(1 + \cos \theta)$ and θ varies from 0 to π above the x –axis

$$\begin{aligned} & \text{Area} = 2\int_{0}^{\pi}\int_{0}^{a(1+\cos\theta)} r\,drd\theta \\ &= 2\int_{0}^{\pi}\left(\frac{\chi^{2}}{2}\right)_{0}^{a(1+\cos\theta)}\,d\theta = \int_{0}^{\pi}a^{2}\,(1+\cos\theta)^{2}\,d\theta \\ &= a^{2}\int_{0}^{\pi}4\cos^{4}\left(\frac{\theta}{2}\right)d\theta \\ &= b \\ &= b \\ &= b \\ &= 4a^{2}\int_{0}^{\pi}\cos^{4}t\,(2dt) = 8a^{2}\int_{0}^{\pi/2}\cos^{4}t\,dt \\ &= 4a^{2}\int_{0}^{\pi/2}\cos^{4}t\,(2dt) = 8a^{2}\int_{0}^{\pi/2}\cos^{4}t\,dt \end{aligned}$$

10. Find the total area enclosed by the lemniscate of Bernoulli $(x^2 + y^2)^2 = a^2(x^2 - y^2)$ **Solution:** We transform the equation to polar form by putting $x = r \cos \theta$, $y = r \sin \theta$ $\therefore r^4 = a^2 r^2 \cos 2\theta$ i.e. $r^2 = a^2 \cos 2\theta$

$$\begin{array}{c} & & & \\ & &$$

Now, consider a small radial strip in the upper half of one loop $\therefore A = 4 \int_{0}^{\pi/4} \int_{0}^{a\sqrt{\cos 2\theta}} r \, dr d\theta$

$$=4\int_{0}^{\pi/4}\left(\frac{\kappa^{2}}{2}\right)_{0}^{\alpha}d\theta$$

$$=\frac{1}{\sqrt{2}}\int_{0}^{\pi/4}\left(\frac{\kappa^{2}}{2}\right)_{0}^{\alpha}d\theta$$

$$=\frac{1}{\sqrt{2}}\int_{0}^{\pi/4}d\theta$$

MODULE-5 Page 7

$$= 2 \int_{0}^{\pi/4} a^{2} \cos 2\theta \, d\theta = 2a^{2} \int_{0}^{\pi/4} \cos 2\theta \, d\theta$$

= $2a^{2} \int_{0}^{\pi/4} \cos 2\theta \, d\theta$
= $2a^{2} \int_{0}^{\pi/4} \cos 2\theta \, d\theta$

11. Find the area inside the circle $r = a \sin\theta$ and outside the cardioide $r = a (1 - \cos\theta)$. **Solution:** The circle and the cardioide intersect where $a \sin\theta = a(1 - \cos\theta)$

i.e.
$$2\sin(\theta/2)\cos(\theta/2) = 2\sin^2(\theta/2)$$

i.e. $\sin\theta/2 [\sin(\theta/2) - \cos(\theta/2)] = 0$
When $\sin\theta/2 = 0 \quad \therefore \theta = 0$
When $\sin\frac{\theta}{2} - \cos\frac{\theta}{2} = 0, \quad \therefore \frac{\theta}{2} = \frac{\pi}{4} \quad \therefore \theta = \frac{\pi}{2}$

$$V = \alpha \sin \theta$$

$$v^{2} = \alpha v \sin \theta$$

$$v^{2} = \alpha y$$

$$v^{2} + (y - \frac{\alpha}{2})^{2} = \frac{\alpha^{2}}{y}$$

$$(en + ve(0, \frac{\alpha}{2}))$$

$$vadius = \frac{\alpha}{2}$$

Now, consider a radial strip in the region of integration. On this strip r varies from $r = a(1 - \cos \theta)$ to $r = a \sin \theta$. Then θ varies from $\theta = 0$ to $\theta = \pi/2$

$$\begin{aligned} & \text{Here values intervalues of 0 = 1/2} \\ & \therefore A = \int_{0}^{\pi/2} \int_{a(1-\cos\theta)}^{a\sin\theta} r \, dr d\theta \\ & = \int_{0}^{\pi/2} \left(\frac{x^2}{2} \right)^{a\sin\theta} d\theta \\ & \phi & a(1-(\cos\theta)) \\ & = \frac{\alpha^2}{2} \int_{0}^{\pi/2} Sr'r^2 \theta - (1-(\sigma S\theta))^2 d\theta \\ & = \frac{\alpha^2}{2} \int_{0}^{\pi/2} \left(Sin^2 \theta - 1 + 2\cos\theta - \cos^2\theta \right) d\theta \\ & = \alpha^2 \left(\int_{0}^{\pi/2} Sr'r^2 \theta + 1 + 2\cos\theta + \cos^2\theta \right) d\theta \end{aligned}$$

$$= \frac{a^{2}}{2} \int_{0}^{\pi/2} (-1 + 2\cos\theta - \cos2\theta) d\theta$$

= $\frac{a^{2}}{2} \left(-\theta + 2\sin\theta - \frac{\sin2\theta}{2} \right)_{0}^{\pi/2}$
= $\frac{a^{2}}{2} \left(-\theta + 2\sin\theta - \frac{\sin2\theta}{2} \right)_{0}^{\pi/2}$
= $\frac{a^{2}}{2} \left(-\frac{\pi}{2} + 2 \right) = \frac{a^{2}(4-\pi)}{4}$

12. Find the area outside the circle r = a and inside the cardioide $r = a (1 + cos\theta)$. **Solution:** The circle r = a and the cardioide $r = a(1 + \cos\theta)$ are as shown in the figure.

$$\begin{aligned}
\gamma &= \alpha \\
(\ln + \kappa e \Rightarrow (\sigma_{1} \sigma)) \\
\gamma &= \alpha \\
(\ln + \kappa e \Rightarrow (\sigma_{1} \sigma)) \\
\gamma &= \alpha \\
\gamma &=$$

$$= \alpha^{2} \int \left(2 \cos \theta + \left(\frac{1 + \cos 2\theta}{2} \right) \right) d\theta$$

$$= \alpha^{2} \int \left(1 + 4\cos \theta + \cos 2\theta \right) d\theta$$

$$= \alpha^{2} \int \left(1 + 4\cos \theta + \cos 2\theta \right) d\theta$$

$$= \alpha^{2} \int \left(0 + 4\sin \theta + \frac{\sin 2\theta}{2} \right)^{T/2} \int_{0}^{T/2} \theta$$

$$= \frac{\alpha^{2}}{2} \left(\frac{1}{2} + 4 \right) = \alpha^{2} \left(\pi + 8 \right)$$

13. Find the area outside the circle $r = a\sqrt{2}$ and inside circle $r = 2a \cos\theta$.

Solution: First we note that $r = a\sqrt{2}$ i.e. $r^2 = 2a^2$ i.e. $x^2 + y^2 = 2a^2$ is a circle with centre at the origin and radius $= a\sqrt{2}$ and $r = 2a\cos\theta$ i.e. $r^2 = 2ar\cos\theta$ i.e. $x^2 + y^2 = 2ax$ i.e. $(x - a)^2 + y^2 = a^2$ is the circle with centre at (a, 0) and radius = a

To find the point of intersection, we solve the two equations

 $\therefore a\sqrt{2} = 2a\cos\theta \qquad \text{i.e. } \cos\theta = \pm 1/\sqrt{2} \text{, } \therefore \theta = \pm \pi/4$ Area of the crescent = $2\int_0^{\pi/4} \int_{a\sqrt{2}}^{2a\cos\theta} r \, dr d\theta$

$$= 2 \int_{0}^{\pi/4} \left(\frac{r^{2}}{2}\right)_{a \int 2}^{2u \cos 0} d\sigma = \int_{0}^{\pi/4} (ha^{2} \cos^{2} \theta - 2a^{2}) d\sigma$$

$$= 4a^{2} \int_{0}^{\pi/4} \cos^{2} \theta d\theta - 2a^{2} \int_{0}^{\pi/4} d\theta$$

$$= 4a^{2} \int_{0}^{\pi/4} \left(\frac{1 + (\cos 2 \theta)}{2}\right) d\theta - 2a^{2} \left(\theta\right)_{0}^{\pi/4}$$

The area of one loop above the x -axis is $= \int_{0}^{\pi/4} \int_{r=0}^{\cos 2\theta} r dr d\theta$ The area of one loop is twice of this $\therefore A = 2 \int_{\theta=0}^{\pi/4} \int_{r=0}^{\cos 2\theta} r dr d\theta$ $= 2 \int_{0}^{\pi/4} \left(\frac{\chi^2}{2} \right)_{0}^{COS \ 20} d\theta = \int_{0}^{\pi/4} COS^2 2\theta d\theta$ $= \int_{0}^{\pi/4} \left(\frac{\chi^2}{2} \right)_{0}^{COS \ 40} d\theta = \frac{1}{2} \left(\theta + \frac{\sin 4\theta}{4} \right)_{0}^{\pi/4}$

$$=\frac{1}{2}\left(\frac{1}{4}+0\right)$$

 $A = \frac{1}{8}$