AREA Monday, May 31, 2021 11:30 AM

- (a) The area enclosed by two plane curves $y = f_1(x)$ and $y = f_2(x)$ intersecting in $A(a, c)$ and $B(b, d)$ is $A = \int_a^b \int_f^y$ \boldsymbol{b} $\int_{a}^{b} \int_{f_1(x)}^{f_2(x)} dx dy$
- **(b)** The area enclosed by two plane curves $r = f_1(\theta)$ and $r = f_2(\theta)$ intersecting in $A(r_1, \alpha)$ and $B(r_2, \beta)$ is $A = \int_{\alpha}^{\rho} \int_{f}^{\beta}$ β $\int_{\alpha}^{\rho} \int_{f_1(\theta)}^{f_2(\theta)} r d\theta dr$

SOME SOLVED EXAMPLES:

1. Find by double integration the area enclosed $y^2 = x^3$ and **Solution:** The two curves intersect at the origin $O(0, 0)$ and $A(1, 1)$

$$
\begin{aligned}\n\sum_{i=1}^{2} &= \sqrt{3} \\
&= \sqrt{3} \\
&= \sqrt{3} \\
\Rightarrow \sqrt{2} &= \sqrt{3} \\
\Rightarrow \sqrt{3} &= \sqrt{3} \\
\Rightarrow
$$

Consider a strip parallel to the y -axis. on this strip y varies from $x^{3/2}$ to And the strip moves from 0 to 1

$$
A = \int_0^1 \int_{x^{3/2}}^{x} dy dx
$$

\n
$$
= \int_0^1 (y) \frac{1}{\gamma^{3/2}} dy = \int_0^1 (\gamma - \gamma^{3/2}) dy = (\frac{\gamma^{3/2}}{2} - \frac{\gamma^{5/2}}{5/2}) = \frac{1}{10}
$$

Y. Ý

2. Find the area between parabola $y = x^2 - 6x + 3$ and the line **Solution:** We have $y = (x - 3)^2 - 6$ i.e. $y + 6 = (x - 3)^2$.

> It is a parabola with vertex at $(3, -6)$ and opening upwards. The line intersects the parabola where $x^2 - 6x + 3 = 2x - 9$ i.e. x^2 i.e. $(x-6)(x-2) = 0$ i.e. when $x = 6$, $x = 2$. When $x = 6$, $y = 12 - 9 = 3$; when $x = 2$, $y = 4 - 9 = -5$. The points of intersection are $B(6, 3)$, $A(2, -5)$

To find the area consider a strip parallel to the y -axis. On this strip y varies from $y = x^2 - 6x + 3$ to Then x varies from $x = 2$ to $x = 6$

$$
\therefore A = \int_{x=2}^{6} \int_{y=x^{2} - 6x + 3}^{2x - 9} dy dx
$$

= $\int_{x^{2} - 6x + 3}^{6} (y^{2})^{2x - 9} dy = \int_{x^{2} - 6x + 3}^{6} (2x - 9 - x^{2} + 6x - 3) dx$

MODULE-5 Page 1

$$
= \int_{2}^{6} (3)_{2^{2}-6+3}^{2^{2}-9} d\pi = \int_{2}^{6} (2^{2}-9-2^{2}+67-3) d\pi
$$

\n
$$
= \int_{2}^{6} (-3^{2}+87-12) d\pi = \left(-\frac{3^{2}}{3}+\frac{87^{2}}{2}-127\right)_{2}^{6}
$$

\n
$$
= -\frac{6^{3}}{3}+4(6)^{2}-(2+6)+\frac{2^{3}}{3}-4(2)^{2}+(12+2)
$$

\n
$$
= \frac{32}{3}
$$

3. Sketch the region bounded by the curves $xy = 16$, $y = x$, $x = 8$ and $y = 0$. Express the area of this region as a double integral in two ways

Solution: The curve $xy = 16$ is a ractangular hyperbola.

A

 $y = x$ is a line passing through the origin and equally inclined to the axes.

 $y = 0$ is the x -axis and $x = 8$ is a line parallel to the y -axis.

$$
\gamma xy = 16
$$
\n
$$
y = x
$$
\n
$$
x = 8
$$
\n
$$
x = 8
$$
\n
$$
y = 0
$$
\n
$$
x = 8
$$
\n
$$
y = 0
$$
\n
$$
x = 0
$$
\n
$$
y = 0
$$

Thus, the region is OABC

The vertices of the figure are $O(0,0)$, $C(8,0)$, $B(8,2)$, $A(4,4)$.

If we drop the perpendicular AM , then M is $(4, 0)$

If we take a strip parallel to the y -axis, then the area divided into

two regions OMA and $AMCB$

$$
x \text{ Area} = \int_{0}^{4} \int_{y=0}^{x} dx dy + \int_{4}^{8} \int_{y=0}^{16/x} dx dy
$$
\n
$$
x \text{ Area} = \int_{0}^{4} \int_{y=0}^{x} dx dy + \int_{4}^{8} \int_{y=0}^{16/x} dx dy
$$
\n
$$
y = 16
$$
\n
$$
y = x
$$
\n

If we take a strip parallel to the x -axis, then the area is divided into two regions OMBC and MBA where M is the point of intesection of a line parallel to the x -axis through B

$$
\therefore \text{Area} = \int_0^2 \int_{x=y}^8 dx dy + \int_2^4 \int_{x=y}^{y/16} dx dy
$$

$$
\left(\text{EVALU} \quad \text{Lulton} \quad \text{Curb} \quad \text{C} \quad \text{D} \quad \text{C} \quad \text{C} \times \text{R} \quad \text{A} \quad \text{B}
$$

4. Find by double integration the area of the smaller region bounded by the ellipse $\frac{x^2}{a^2}$ $\frac{x^2}{a^2} + \frac{y^2}{b^2}$ $rac{y^2}{b^2}$ = 1 and the line $rac{x}{a} + \frac{y}{b}$ $rac{y}{b}$ **Solution:** The ellipse $\frac{x^2}{a^2}$ $rac{x^2}{a^2} + \frac{y^2}{b^2}$ $\frac{y^2}{b^2} = 1$ and the line $\frac{x}{a} + \frac{y}{b}$ $\frac{y}{b}$ = 1 are shown in the figure

Solution: The ellipse
$$
\frac{1}{a^2} + \frac{1}{b^2} = 1
$$
 and the line $\frac{1}{a} + \frac{1}{b} = 1$ are shown in the figure
\n
$$
\frac{1}{a} + \frac{1}{b} = 1
$$
\n
$$
\Rightarrow \frac{1}{a} \times \frac{1}{b} = 1
$$
\n
$$
\Rightarrow \frac{1}{a} \times \frac{1}{b} = 1
$$
\n
$$
\Rightarrow \frac{1}{a} \times \frac{1}{b} = 1
$$
\n
$$
\Rightarrow \frac{1}{a} \times \frac{1}{b} = 1
$$
\n
$$
\Rightarrow \frac{1}{a} \times \frac{1}{b} = 1
$$
\n
$$
\Rightarrow \frac{1}{a} \times \frac{1}{b} = 1
$$
\n
$$
\Rightarrow \frac{1}{a} \times \frac{1}{b} = 1
$$
\n
$$
\Rightarrow \frac{1}{a} \times \frac{1}{b} = 1
$$
\n
$$
\Rightarrow \frac{1}{a} \times \frac{1}{a} = 1 - \frac{1}{a} = 1
$$
\n
$$
\Rightarrow \frac{1}{a} \times \frac{1}{a} = 1 - \frac{1}{a} = 1
$$
\n
$$
\Rightarrow \frac{1}{a} \times \frac{1}{a} = 1 - \frac{1}{a} = 1
$$
\n
$$
\Rightarrow \frac{1}{a} \times \frac{1}{a} = 1 - \frac{1}{a} = 1
$$
\n
$$
\Rightarrow \frac{1}{a} \times \frac{1}{a} = 1 - \frac{1}{a} = 1
$$
\n
$$
\Rightarrow \frac{1}{a} \times \frac{1}{a} = 1 - \frac{1}{a} = 1
$$
\n
$$
\Rightarrow \frac{1}{a} \times \frac{1}{a} = 1 - \frac{1}{a} = 1
$$
\n
$$
\Rightarrow \frac{1}{a} \times \frac{1}{a} = 1 - \frac{1}{a} = 1
$$
\n
$$
\Rightarrow \frac{1}{a} \times \frac{1}{a} = 1 - \frac{1}{a} = 1 - \frac{1}{a} = 1
$$
\n
$$
\Rightarrow \frac{1}{a} \times \frac{1}{a} = 1 - \frac{1}{a} = 1 - \frac{1}{a} = 1
$$
\n<

5. Using double integration find the area bounded by the parabolas $x = y^2$, $x = 2y - y^2$ **Solution:** The parabola $y^2 = x$ has vertex at the origin.

> The parabola $y^2 - 2y = -x$ i.e. $(y - 1)^2 = -(x - 1)$ has vertex at The two parabolas intersect where $y^2 = 2y - y^2$ i.e. The points of intersection are $(0,0)$, $(1,1)$

$$
v \leq \sum_{i} \sum_{j} \sum_{j} \left(\begin{matrix} (1,1) \\ \vdots \\ (N-1) \end{matrix}\right) \quad \forall j \in \mathcal{J}^{\mathcal{L}}
$$

Consider a strip parallel to the x -axis. On this strip x varies from y^2 to $2y - y^2$ and the strip moves from $y = 0$ to $y = 1$ Hence, $A = \int_0^1 \int_{y^2}^{2y-y^2}$

Hence,
$$
A = J_0 J_{y^2}
$$

 $= \int_{0}^{1} (y)_{y^2}^{2y-y^2} dy = \int (2y-2y^2) dy = (y^2-2y^3) = \frac{1}{3}$

$$
=\int_{0}^{1} (y)_{y^{2}}^{2y-y^{2}} dy = \int_{0}^{1} (2y-2y^{2}) dy = (y^{2}-2y^{3})^{1} = \frac{1}{3}
$$

6. Find by double integration the area included between the curves $y = 3x^2 - x - 3$ and $y = -2x^2$ **Solution:** We have $y = 3x^2$

i.e. $y + 3 + \frac{1}{11}$ $\frac{1}{12} = 3\left(x^2 - \frac{1}{3}\right)$ $\frac{1}{3}x + \frac{1}{36}$ $\frac{1}{3}$ i.e. $y + \frac{3}{4}$ $\frac{37}{12} = 3\left(x - \frac{1}{6}\right)$ $\frac{1}{6}$)² which is a parabola with vertex at $(1/6, -37/12)$ and opening upwards and $y = -2x^2$ i.e. $y - 7 = -2(x^2)$ i.e. $y - 9 = -2(x - 1)^2$ which is a parabola with vertex at $(1, 9)$ and opening downwards The two curves intersect when $3x^2 - x - 3 = -2x^2$ \therefore 5x² $\therefore x^2 - x - 2 = 0$ \therefore $(x - 2)(x + 1) = 0$ \therefore x = 2 or x = -1 When $x = -1$, $y = +1$ and when $x = 2$, $y = 7$.

Thus, the two curves intersect in $(-1, 1)$ and $(2, 7)$

Now, consider a strip parallel to the y -axis. On this strip y varies from $3x^2 - x - 3$ to $-2x^2$ Then x -varies from $x = -1$ to $x = 2$ \sim 2.1.

$$
\therefore A = \int_{-1}^{2} \int_{3x^{2} - x - 3}^{-2x^{2} + 4x + 7} dy dx
$$

$$
= \int_{-1}^{2} \left[9 \int_{3\pi^{2}-\pi-3}^{-2\pi^{2}+4\pi+7} d\pi \right]
$$

$$
=\int_{-1}^{2} (-2n^{2}+4n+7-3n^{2}+n+3) dx
$$

= $\int_{-1}^{2} (-5n^{2}+5n+10) dx$

MODULE-5 Page 4

$$
2\left(-\frac{5\eta^{3}}{3} + \frac{5\eta^{2}}{2} + 10\eta\right)_{-1}^{2} = \left(-\frac{40}{3} + 10\eta^{2}\right) - \left(\frac{5}{3} + \frac{5}{2}\eta^{0}\right)
$$

$$
= -15 + 40 - \frac{5}{2} = \frac{45}{2}
$$

7. Find the larger of the two areas into which the circle $x^2 + y^2 = 16a^2$ is divided by the parabola y^2 $(en^{ref}(0,0))$ radius = 4a. **Solution:** We shall first find the common area AOBCA.

$$
\gamma \rightarrow \text{p}
$$

The points of intersection are given by $x^2 + 6ax - 16a^2$ $\therefore x = 2a$ $\therefore y^2 = 12a^2 \therefore y = 2\sqrt{3}$ Hence, B is $\left(2a, 2\sqrt{3}\right)$: Area = $2 \int_0^{2\sqrt{3} \cdot a} \int_{x=x^2/6a}^{\sqrt{16a^2-y^2}}$ $\int_{0}^{2\sqrt{3}\cdot a} \int_{x=y^2}^{\sqrt{16a}}$ $\bf{0}$ = $2 \int^{2\sqrt{3}a} (7)^{\sqrt{16a^2-y^2}} dy$ $2\sqrt{3}a$ = $2\int \sqrt{16a^2-y^2} - \frac{y^2}{6a} dy$ ∩ = 2 $\left[\frac{9}{2}\sqrt{16a^2-y^2}+\frac{16a^2}{2}\sin^{-1}(\frac{9}{4a})-\frac{93}{18a}\right]_0^{2\sqrt{3}a}$ = $[2\sqrt{3}a \cdot 2a + 16a^{2}sin^{7}(\frac{\sqrt{3}}{2}) - \frac{24\sqrt{3}}{9a} \cdot a^{5}]$ $= 4\sqrt{3}a^{2} + 16a^{2}\frac{\pi}{3} - \frac{8}{3}\sqrt{3}a^{2}$ $= 4 (4\pi + \sqrt{3})a^2$

But area of the circle = $\pi 16a^2$

 \therefore Required area = $\pi 16a^2 - \frac{4}{3}$ $\frac{4}{3}\left(4\pi + \sqrt{3}\right) a^2 = \frac{4}{3}$ $\frac{4}{3} \left(8\pi - \sqrt{3} \right) a^2$

8. Find by double integration the area common to the circles $x^2 + y^2 - 4y = 0$ and $x^2 + y^2$ **Solution:** The equation $x^2 + y^2 - 4y = 0$ can be written as $x^2 + (y - 2)^2 = 2^2$.

Its Centre is $(0, 2)$ and radius = 2.

And the equation $x^2 + y^2 - 4x - 4y + 4 = 0$ can be written as $(x - 2)^2 + (y - 2)^2 = 2^2$. Its Centre is $(2, 2)$ and radius = 2

By subtraction, we see that the circles intersect at points where $x = 1$

Consider a strip parallel to the y -axis.

Then on the circle on the left i.e. on $x^2 + y^2 - 4y = 0$ i.e. on $y = \frac{4 \pm \sqrt{16 - 4x^2}}{2}$ y varies from $2-\sqrt{4-x^2}$ to $2+\sqrt{4-x^2}$

9. Find the area of the cardioide $r = a(1 + \cos \theta)$ **Solution:**

For the cardioid r varies from 0 to $a(1 + \cos \theta)$ and θ varies from 0 to π above the x -axis

$$
\therefore \text{Area}=2 \int_0^{\pi} \int_0^{a(1+cos\theta)} r dr d\theta
$$
\n
$$
=2 \int_0^{\pi} \left(\frac{x^2}{2}\right)_0^{a(1+(cos\theta))} d\theta = \int_0^{\pi} a^2 C1 + cos\theta^2 d\theta
$$
\n
$$
= a^2 \int_0^{\pi} 4 cos\theta \left(\frac{\theta}{2}\right) d\theta
$$
\n
$$
= a^2 \int_0^{\pi} 4 cos\theta \left(\frac{\theta}{2}\right) d\theta
$$
\n
$$
= \int_0^{\pi} 2
$$
\n $$

10. Find the total area enclosed by the lemniscate of Bernoulli $(x^2 + y^2)^2 = a^2(x^2 - y^2)$ **Solution:** We transform the equation to polar form by putting \therefore $r^4 = a^2r^2 \cos 2\theta$ i.e. $r^2 = a^2$ c

$$
\begin{array}{ccccc}\n\sqrt{7} & & \text{for } a \text{ [cbs20]} \\
\downarrow & & \text{if } & \text{
$$

Now, consider a small radial strip in the upper half of one loop $\therefore A = 4 \int_0^{\pi/4} \int_0^{a\sqrt{c}}$ π

MODULE-5 Page 7

$$
= 2 \int_{0}^{\pi/4} a^{2} \cos 2\theta \, d\theta = 2a^{2} \int_{0}^{\pi/4} \cos 2\theta \, d\theta
$$

$$
= 2a^{2} \left[\frac{\sin 2\theta}{2} \right]_{0}^{\pi/4} = a^{2}
$$

11. Find the area inside the circle $r = a sin\theta$ and outside the cardioide $r = a(1 - cos\theta)$. **Solution:** The circle and the cardioide intersect where $a \sin \theta = a(1 - \cos \theta)$

i.e.
$$
2 \sin(\theta/2) \cos(\theta/2) = 2 \sin^2(\theta/2)
$$

\ni.e. $\sin \theta/2 [\sin(\theta/2) - \cos(\theta/2)] = 0$
\nWhen $\sin \theta/2 = 0$ $\therefore \theta = 0$
\nWhen $\sin \frac{\theta}{2} - \cos \frac{\theta}{2} = 0$, $\therefore \frac{\theta}{2} = \frac{\pi}{4}$ $\therefore \theta = \frac{\pi}{2}$

$$
\sqrt{2} = \alpha \sin \theta
$$
\n
$$
\sqrt{2} = \alpha \sqrt{3} \cdot \theta
$$
\n
$$
\sqrt{2} = \alpha \sqrt{3} \cdot \theta
$$
\n
$$
\sqrt{2} \times \sqrt{2} = \frac{\alpha \sqrt{3}}{2}
$$
\n
$$
\sqrt{2} \times \sqrt{2} = \frac{\alpha \sqrt{2}}{2}
$$
\n
$$
\sqrt{2} \times \sqrt{2} = \frac{\alpha \sqrt{2}}{2}
$$
\n
$$
\sqrt{2} \times \sqrt{2} = \frac{\alpha \sqrt{2}}{2}
$$

Now, consider a radial strip in the region of integration. On this strip r varies from $r = a(1 - \cos \theta)$ to $r = a \sin \theta$. Then θ varies from $\theta = 0$ to $\theta = \pi/2$

$$
\therefore A = \int_0^{\pi/2} \int_{a(1-cos\theta)}^{a sin\theta} r dr d\theta
$$
\n
$$
= \int_0^{\pi/2} \left(\frac{x^2}{2}\right) \frac{a sin\theta}{a(1-(os\theta))} d\theta
$$
\n
$$
= \frac{a^2}{2} \int_0^{\pi/2} sin^2\theta - (1-(cos\theta))^2 d\theta
$$
\n
$$
= \frac{a^2}{2} \int_0^{\pi/2} sin^2\theta - 1 + 2cos\theta - cos^2\theta d\theta
$$
\n
$$
= \frac{a^2}{2} \int_0^{\pi/2} (sin^2\theta - 1 + 2cos\theta - cos^2\theta) d\theta
$$
\n
$$
= a^2 \int_0^{\pi/2} (cos^2\theta - 1) d\theta
$$

$$
= \frac{a^{2}}{2} \int_{0}^{7/\frac{1}{2}} (-1 + 2cos\theta - cos2\theta) d\theta
$$

= $\frac{a^{2}}{2} \left(-\theta + 2sin\theta - \frac{sin2\theta}{2}\right)^{7/2}$
= $\frac{a^{2}}{2} \left(-\frac{\eta}{2} + 2\right) = \frac{a^{2}(4-\pi)}{4}$

12. Find the area outside the circle $r = a$ and inside the cardioide $r = a(1 + cos\theta)$. **Solution:** The circle $r = a$ and the cardioide $r = a(1 + \cos \theta)$ are as shown in the figure.

$$
= \frac{a^{2}}{0} \left[2cos\theta + (\frac{1+cos2\theta}{2}) \right] d\theta
$$

$$
= \frac{a^{2}}{2} \int_{0}^{\pi/2} (1+4cos\theta + cos2\theta) d\theta
$$

$$
= \frac{a^{2}}{2} \left[\theta + 4sin\theta + \frac{sin2\theta}{2} \right]_{0}^{\pi/2}
$$

$$
= \frac{a^{2}}{2} [\frac{n}{2} + 4] = \frac{a^{2}}{4} [\pi + 8]
$$

13. Find the area outside the circle $r = a\sqrt{2}$ and inside circle

Solution: First we note that $r = a\sqrt{2}$ i.e. $r^2 = 2a^2$ i.e. $x^2 + y^2 = 2a^2$ is a circle with centre at the origin and radius $= a\sqrt{2}$ and $r = 2a \cos \theta$ i.e. $r^2 = 2ar \cos \theta$ i.e. $x^2 + y^2 = 2ax$ i.e. $(x - a)^2 + y^2 = a^2$ is the circle with centre at $(a, 0)$ and radius

$$
\begin{array}{ccc}\n\sqrt{7} & \text{a} \sqrt{2} & \text{b} \sqrt{2} & \text{c} \sqrt{2} & \text{c} \sqrt{2} \\
\text{b} & \text{c} & \text{d} & \text{c} & \text{d} \\
\text{d} & \text{d} & \text{e} & \text{d} & \text{e} & \text{d} \\
\text{d} & \text{e} & \text{f} & \text{f} & \text{f} & \text{f} & \text{f} \\
\text{f} & \text{f} \\
\text{f} & \text{f} \\
\text{f} & \text{f} \\
\text{f} & \text{f} \\
\text{f} & \text{f} \\
\text{f} & \text{f} \\
\text{f} & \text{f} &
$$

To find the point of intersection, we solve the two equations

 $\overline{2} = 2a \cos \theta$ i.e. $\cos \theta = \pm 1/\sqrt{2}$ Area of the crescent $=2\int_0^{\pi/4}\int_{\alpha\sqrt{2}}^{2a\cos\theta}r\,dr$ $0 \quad \text{J}_a$

MODULE-5 Page 10

14. Find by double integration the area enclosed by one loop of $r = \cos 2\theta$ **Solution:** The curve $r = \cos 2\theta$ is a four leaved rose.

 π The area of one loop above the x -axis is $= \int_0^{n+1} \int_r^1$ $\bf{0}$ The area of one loop is twice of this π $\therefore A = 2 \int_{\theta=0}^{n/4} \int_{r}^{r}$ θ $= 2 \int_{0}^{\pi/4} \left(\frac{x^{2}}{2}\right)^{\cos 2\theta} d\theta = \int_{0}^{\pi/4} cos^{2}2\theta d\theta$

$$
= \int_{0}^{\pi/4} \left(\frac{1 + \omega s \cdot 40}{2} \right) d\theta = \frac{1}{2} \left[\theta + \frac{\sin 4\theta}{4} \right]_{0}^{\pi/4}
$$

$$
= \frac{1}{2} \left[\frac{\pi}{4} + 0 \right]
$$

 $A = \frac{\pi}{8}$