EVALUATION IN POLAR COORDINATES

Monday, May 17, 2021 11:30 AM

DOUBLE INTEGRALS IN POLAR COORDINATES:

If the region of integration is a circle, ellipse, lemniscate, etc. or if the integral contains an expression like

 $(x^2 + y^2)^{n/2}$ then it is easier to solve the problem by transforming into polar by putting

 $x = r \cos \theta, y = r \sin \theta, \ dx \ dy = r \ d\theta \ dr \ (\text{in circle})$ or $x = ar \cos \theta, y = br \sin \theta, \ dx \ dy = abr \ d\theta \ dr \ (\text{in ellipse})$

Here consider the region ABCD bounded by the polar curves $r = f_1(\theta), r = f_2(\theta)$ and the lines $\theta = \theta_1 and \theta = \theta_2$.

The strips are always radial w.r.t the pole.

Here the radial elementary strip (called a wedge) of angular thickness $r\delta\theta$ such as PQ extends

from
$$r = f_1(\theta)$$
, at P to $r = f_2(\theta)$ at Q

To Cover the entire region of integration, then such strip slides from $\theta = \theta_1$ to $\theta = \theta_2$.

Hence $I = \int_{\theta_1}^{\theta_2} \int_{f_1(\theta)}^{f_2(\theta)} f(r, \theta) r d\theta dr$

THEOREM: Prove that $B(m, n) = \frac{|m||n|}{|m+n|}$

Proof: To prove the property we assume a property of double integral.

"If limits of both the integrals are constants and if variables can be separated then the given double integral can be supressed as a product of two integrals as follows:

integral can be expressed as a product of two integrals as follows:

$$\int_{a}^{b} \int_{c}^{d} f(x, y) dx dy = \int_{a}^{b} \int_{c}^{d} g(x) \cdot \phi(y) dx dy = \left[\int_{a}^{b} g(x) dx \right] \left[\int_{c}^{d} \phi(y) dy \right]^{"}$$

Now consider second form of Gamma function, We have $\overline{|m|} \cdot \overline{|n|} = \left(2 \int_{0}^{\infty} e^{-x^{2}} x^{2m-1} dx\right) \left(2 \int_{0}^{\infty} e^{-y^{2}} y^{2n-1} dy\right)$

$$n \cdot |n| = \left(2 \int_0^\infty e^{-x^2} x^{2m-1} dx\right) \left(2 \int_0^\infty e^{-y^2} y^{2m-1} dy$$
$$= 4 \int_0^\infty \int_0^\infty e^{-(x^2+y^2)} x^{2m-1} y^{2m-1} dx dy$$

We now change the integral on r.h.s to polar form by putting $x = r \cos \theta$, $y = r \sin \theta$ and $dx dy = rd\theta dr$.

Since x and y change from $0 to \infty$ the region is the entire first quadrant. To span this region in polar coordinates r must vary from $0 to \infty$ and θ from 0 to $\frac{\pi}{2}$

$$\therefore \ \overline{|m|} \cdot \overline{|n|} = 4 \int_0^{\pi/2} \int_0^\infty e^{-r^2} r^{2m-1} (\cos \theta)^{2m-1} \cdot r^{2n-1} (\sin \theta)^{2n-1} \cdot r \, dr \, d\theta$$

$$= 4 \int_0^{\pi/2} \int_0^\infty e^{-r^2} r^{2(m+n)-1} (\cos \theta)^{2m-1} (\sin \theta)^{2n-1} dr \, d\theta$$

$$= \left(2 \int_0^\infty e^{-r^2} r^{2(m+n)-1} \, dr \right) \cdot \left(2 \int_0^{\pi/2} (\cos \theta)^{2m-1} (\sin \theta)^{2n-1} \, d\theta \right)$$

$$= |\overline{m+n} B(m,n)$$

As the first integral is a Gamma function and the second integral is a Beta Function.

$$\therefore B(m,n) = \frac{\overline{|m|n|}}{\overline{|m+n|}}$$

TYPE 4: EVALUATION OF DOUBLE INTEGRALS IN POLAR COORDINATES Evaluate the following integrals

1. $\iint r^3 dr d\theta$ over the area included between the circles $r = 2 \sin \theta$ and $r = 4 \sin \theta$

Solv. The circle
$$x = 2 \sin \theta$$

 $x^2 = 2x \sin \theta$
 $y^2 + y^2 - 2y = 0$
 $y^2 + y^2 = 2y$
 $y = 2y$
 $y = 2y + (y - 1)^2 = 1$
(ircle with centre at (0,1) and vadius!
 $x = 4 \sin \theta$
 $y = 12 + (y - 2)^2 = 4$
circle with centre at (0,2) and vadius?

In this region

$$x$$
 varies from 2 sind to usind
and then 0 varies from 0 to T
 $T = \int_{a}^{T} \int_{a}^{a} x^{3} dx d\theta$
 $0 = \int_{0}^{T} \left(\frac{x^{4}}{4}\right)^{\frac{4}{3}} \frac{\sin \theta}{2 \sin \theta} d\theta$
 $= \frac{1}{4} \int_{0}^{T} \frac{4^{4} \sin^{4} \theta}{2 \sin^{4} \theta} - \frac{2^{4} \sin^{4} \theta}{2 \sin^{4} \theta} d\theta$
 $= \frac{1}{4} \int_{0}^{T} \frac{4^{4} \sin^{4} \theta}{2 \sin^{4} \theta} - \frac{2^{4} \sin^{4} \theta}{2 \sin^{4} \theta} d\theta$
 $= \frac{1}{6} \int_{0}^{T} \frac{\sin^{4} \theta}{2 \sin^{4} \theta} d\theta = 120 \int_{0}^{T} \frac{5^{4} \pi}{2 \sin^{4} \theta} d\theta$
 $\left(\int_{0}^{2u} \frac{4^{4} \pi}{2 \sin^{4} \theta} - 2\int_{0}^{2u} \frac{1}{2} \frac{1}{2}$

$$if f(2a-m) = f(m)$$

$$J = 120 \cdot \frac{1}{2} B \left(\frac{4+1}{2}, \frac{0+1}{2} \right) = 60 B \left(\frac{5}{2}, \frac{1}{2} \right)$$

$$J = \frac{45\pi}{2}$$

2. Evaluate $\iint \frac{r \, dr d\theta}{\sqrt{r^2 + a^2}}$ over one loop of the lemniscate $r^2 = a^2 \cos \theta$ α^2 ($\cos 2 \theta$)

MODULE-5 Page 3

$$= \int \left(\alpha \sqrt{1 + (\sigma s_{2} \sigma - \alpha)} \right) d\theta$$

$$= \alpha \int \frac{\pi}{4} \left(\int z \cos \theta - 1 \right) d\theta$$

$$= \alpha \left(\int z \sin \theta - \theta \right) \frac{\pi}{4}$$

$$= \left(2 - \frac{\pi}{2} \right) \alpha$$

3. Evaluate $\iint re^{-r^2/a^2} \cos \theta \sin \theta \, d\theta dr$ over the upper half of the circle $r = 2a \cos \theta$

Ţ

Sol^b:
$$r = 2a \cos \theta = x^2 = 2ar \cos \theta$$

=> $n^2 + y^2 = 2a \pi$
=> $n^2 - 2a\pi + y^2 = 0$
=> $(n - a)^2 + y^2 = a^2$

This is a circle with centre at (a, o) and radius a

In this region, r varies from
0 to 20,000 and 0 varies
from 0 to
$$\frac{\pi}{2}$$

 $\pi/2$ 20,000
 $J = \int \int xe^{-r^2/a^2} \sin \theta \cos \theta \, dr \, d\theta$
 $\rho ut \frac{r^2}{a^2} = t = r^2 - a^2 t$
 $r dr = a^2 dt$

.

when
$$\sqrt{20}$$
 ; $t=0$

$$x = 2a\cos\theta$$
; $t=4\cos^{2}\theta$

$$J = \int_{0}^{\pi/2} \int_{0}^{\pi/2} \frac{1}{e^{2}} \frac{a^{2}}{2} dt \quad \sin\theta \cos\theta d\theta$$

$$= \int_{0}^{\pi/2} \int_{0}^{2} (-e^{t}) \int_{0}^{4\cos^{2}\theta} \sin\theta \cos\theta d\theta$$

$$= -\frac{a^{2}}{2} \int_{0}^{\pi/2} (e^{4\cos^{2}\theta} - 1) \sin\theta \cos\theta d\theta$$

$$= -\frac{a^{2}}{2} \int_{0}^{\pi/2} e^{4\cos^{2}\theta} \sin\theta \cos\theta d\theta - \int_{0}^{\pi/2} \sin\theta \cos\theta d\theta$$

$$= -\frac{a^{2}}{2} \int_{0}^{\pi/2} e^{4\cos^{2}\theta} \sin\theta \cos\theta d\theta - \int_{0}^{\pi/2} \sin\theta \cos\theta d\theta$$

$$= \frac{-a^{2}}{2} \int_{0}^{0} e^{4t} \frac{dt}{2} - \frac{1}{2} B \left(\frac{t^{4}}{2}, \frac{1+t}{2} \right) \int_{0}^{1} e^{4t} \frac{dt}{2} - \frac{1}{2} B \left(\frac{t^{4}}{2}, \frac{1+t}{2} \right) \int_{0}^{1} e^{4t} \frac{dt}{4} - \frac{e^{4}}{4} \int_{0}^{0} t + \frac{a^{2}}{4} \frac{\pi}{12} \int_{0}^{1} \frac{1}{12}$$

$$= \frac{a^2}{4} - \frac{a^2}{16} + \frac{a^2}{16} = \frac{3a^2}{16} + \frac{a^2e^4}{16}$$

4. Evaluate $\iint_R \sin \theta \, dA$ where *R* is the region in the first quadrant that is outside the circle r = 2 and inside the cardioid $r = 2(1 + \cos \theta)$

Solve:
$$Y = 2$$
 => $r^2 = 4$ => $r^2 + y^2 = 2^2$
This is a circle with (entre at
origin and radius 2
The two curves are as shown
in figure.
The Region R outside the circle
and inside the cardioide is
ABCDEA and in polew coordinates
 $dA = r drd\theta$
On this strip, revenues from $r = 2$ to $r = 2(1+cos\theta)$
and then θ varies from $r = 2$ to $r = 2(1+cos\theta)$
and then θ varies from $r = 2$ to $r = 2(1+cos\theta)$
and then θ varies from $r = 2$ to $r = 2(1+cos\theta)$
and then θ varies from $r = 2$ to $r = 2(1+cos\theta)$
and then θ varies from $r = 2$ to $r = 2(1+cos\theta)$
and then θ varies from $r = 2$ to $r = 2(1+cos\theta)$
 $r = \int_{R} \int_{R}$

MODULE-5 Page 6

$$= \int_{0}^{\pi/2} \left[2(1+\cos\theta)^{2} - 2 \right] \sin\theta \, d\theta$$

$$= 2\int_{0}^{\pi/2} \left(1+2\cos\theta + \cos^{2}\theta - 1 \right) \sin\theta \, d\theta$$

$$= 2\int_{0}^{\pi/2} \left(2\sin\theta \cos\theta + \sin\theta \cos^{2}\theta \right) \, d\theta$$

$$= 4 \cdot \frac{1}{2} \left[8\left(\frac{1+1}{2}, \frac{1+1}{2} \right) + 2 \cdot \frac{1}{2} \left[8\left(\frac{1+1}{2}, \frac{2+1}{2} \right) \right] \right]$$

$$= 2 \left[8(1,1) + \left[8\left(1, \frac{3}{2} \right) \right]$$

$$= 2 + \left[\frac{1}{1} \frac{13/2}{152} \right] = 2 + \left[\frac{1}{2} \left[\frac{1}{2} \right] \right]$$

$$= 2 + \frac{1}{3} = \frac{8}{3}$$