LENGTH OF THE ARC OF A CURVE GIVEN IN PARAMETRIC FORM

• Length of the arc of a curve given in parametric form as $x = f_1(t)$ and $y = f_2(t)$ is

•
$$
S = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt
$$

1) Find the length of one arc of the cycloid $x = a(\theta - \sin \theta)$, $y = a(1 + \cos \theta)$

$$
0 = 0 \quad \text{if } n = 2a \quad (0, 2a)
$$
\n
$$
0 = 0 \quad \text{if } n = 2a \quad (0, 2a)
$$
\n
$$
0 = 0 \quad \text{if } n = 2a \quad (0, 2a)
$$
\n
$$
0 = 0 \quad \text{if } n = 2a \quad (2a \quad (2a \quad 2a)
$$

$$
0=0.60
$$
 $0=2\pi$
\nThe curve is shown here.
\n 4π $A, \sigma=0$ and 4π $B, 0=2\pi$

The
$$
req
$$
 q length
\n
$$
= \int_{0}^{2\pi} \sqrt{\frac{d^{2}r}{d\theta}}^{2} + (\frac{dy}{d\theta})^{2} d\theta
$$
\n
$$
= \alpha (0-sin\theta) \Rightarrow \frac{dx}{d\theta} = a(1-cos\theta)
$$
\n
$$
y = a(1+cos\theta) \Rightarrow \frac{dy}{d\theta} = a(0-sin\theta)
$$
\n
$$
(\frac{dx}{d\theta})^{2} + (\frac{dy}{d\theta})^{2} = o^{2}(1-cos\theta)^{2} + a^{2}sin^{2}\theta
$$
\n
$$
= a^{2}[1-2cos\theta + cos^{2}\theta + sin^{2}\theta]
$$
\n
$$
= a^{2}[1-2cos\theta]
$$
\n
$$
= 2a^{2}[1-cos\theta]
$$
\n
$$
= 2a^{2}[1-cos\theta]
$$
\n
$$
= 2a^{2}[2sin^{2}\theta/2]
$$
\n
$$
\therefore
$$
 The $nequivalent$ $l = \int_{0}^{2\pi} \sqrt{4a^{2}sin^{2}\theta/2} d\theta$ \n
$$
= 2a \int_{0}^{2\pi} sin\frac{\theta}{2} d\theta
$$
\n
$$
= 2a \int_{0}^{2\pi} sin\frac{\theta}{2} d\theta
$$
\n
$$
= 2a \left[-\frac{cos\theta/2}{1/2} \right]_{0}^{2\pi}
$$
\n
$$
= -ka \left[cos\theta - cos\theta \right]
$$

MODULE-4 Page 1

$$
\begin{array}{ccc}\n\downarrow & & & & \uparrow \mathcal{L} & \rightarrow \mathcal{U}\n\end{array}
$$

 $\mathcal{L}^{\mathcal{L}}$

$$
=-4a[cos 1-cos 0]
$$

=-4a[-1-1]

length of one arc of = 8a

Example 2) Prove that the length of the arc of the curve $x = a \sin 2\theta (1 + \cos 2\theta), y = a \cos 2\theta (1 - \cos 2\theta)$ measured from the origin to (x, y) is $\frac{1}{3}a \sin 3\theta$.

$$
\frac{501^9}{d\phi} = 0 \sin 2\theta (1 + \cos 2\theta) \n\frac{d\alpha}{d\theta} = 20 \cos 2\theta (1 + \cos 2\theta) + a \sin 2\theta (0 - 2 \sin 2\theta) \n= 2a \cos 2\theta + 2a \cos^2 2\theta - 2a \sin^2 2\theta \n= 20 \cos 2\theta + 2a (\cos^2 2\theta - \sin^2 2\theta) \n\frac{d\alpha}{d\theta} = 2a \cos 2\theta + 20 \cos 4\theta \n\frac{d\alpha}{d\theta} = 2a \cos 2\theta + 20 \cos 4\theta \n\frac{d\alpha}{d\theta} = -2a \sin 2\theta (1 - \cos 2\theta) + a \cos 2\theta (0 + 2 \sin 2\theta) \n= -2a \sin 2\theta + 2a \sin 2\theta \cos 2\theta \n+2a \sin 2\theta \cos 2\theta \n= -2a \sin 2\theta + 4a \sin 2\theta \cos 2\theta \n\frac{d\alpha}{d\theta} = -2a \sin 2\theta + 2a \sin 2\theta \cos 2\theta \n\frac{d\alpha}{d\theta} = -2a \sin 2\theta + 2a \cos 2\theta
$$

$$
= 4a^{2}cos^{2}20 + 4a^{2}cos^{2}40 + 8a^{2}cos20 cos40
$$

+ 4a²sin²20 + 4a²sin²40 - 8a²sin20 sin40
= 4a² + 4a² + 8a² [cos20 cos40 - sin20 sin40]
= 8a² + 8a² cos60 = 8a² (1+cos60)
= 8a² (2 cos²30)

$$
(\frac{dx}{40})^{2} + (\frac{dy}{d0})^{2} = 16a^{2}cos^{2}30
$$

∴ The required length =
$$
\int \sqrt{(\frac{dx}{d0})^{2} + (\frac{dy}{d0})^{2}} d0
$$

The required length= $\int \frac{1}{\sqrt{d^{2}+1^{2}+(\frac{dy}{d\theta})^{2}}} d\theta$

$$
= \int_{0}^{0} \sqrt{160^{2} \cos^{2} 30} d0
$$

$$
= 4a \int_{0}^{0} \cos 30 d0
$$

$$
= 4a \left[\frac{\sin 30}{3} \right]_{0}^{0}
$$

$$
= \frac{4a}{3} [\sin 30 - \sin 30]
$$

$$
= \frac{4a}{3} \sin 30
$$

3) Find the total length of the curve $(x/a)^{2/3}$ + $(y/b)^{2/3}$ = 1. Hence, deduce the total length of the curve $x^{2/3} + y^{2/3} = a^{2/3}$. Also show that the line $\theta = \pi/3$ divides the length of the astroid $x^{2/3} + y^{2/3} = a^{2/3}$ in the first quadrant in the ratio 1: 3.

Soin, The curse is astroid as shown in the figure 1) To rectify the curve $\left(\frac{a}{a}\right)^{2/3} + \left(\frac{y}{b}\right)^{2/3} = 1$, Let's use the $\left(\frac{a}{b}\right)^{2/3}$
Parcumetric equation of the curve. The ea^{ns} are $M = 0$ $cos^{3}0$ $y = b sin^{3}\theta$ If sis the tobal length $S = 4 \int_{0}^{\pi/2} \sqrt{\frac{d^4y}{d\theta}^2 + (\frac{dy}{d\theta})^2} d\theta$ $m = \alpha cos^3\theta$ $\frac{d\gamma}{d\theta} = -3a cos^2\theta sin\theta$ $y = b sin^{3}\theta$ $\frac{dy}{d\theta} = 3b sin^{2}\theta cos\theta$ $\left(\frac{d\gamma}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2 = 9 \left(a^2 \cos^4\theta \sin^2\theta + b^2 \sin^4\theta \cos^2\theta\right)$

$$
= q sin^{2}\theta cos^{2}\theta (d-cos^{2}\theta + b^{2}sin^{2}\theta)
$$
\n
\n
$$
s = \frac{\pi}{2}
$$
\n
$$
\int q sin^{2}\theta cos^{2}\theta (d^{2}cos^{2}\theta + b^{2}sin^{2}\theta) d\theta
$$
\n
$$
= \frac{\pi}{2}
$$
\n
$$
= \frac{\pi}{2} sin \theta cos \theta \int a^{2}cos^{2}\theta + b^{2}sin^{2}\theta d\theta
$$
\n
$$
e^{2} cos 2\theta + b^{2} sin^{2}\theta = t^{2}
$$
\n
$$
= a^{2} cos \theta sin \theta + 2b^{2} sin \theta cos \theta d\theta = 2tdt
$$
\n
$$
2 sin \theta cos \theta (b^{2}-a^{2}) d\theta = 2tdt
$$
\n
$$
sin \theta cos \theta d\theta = \frac{t}{b^{2}-a^{2}} d\theta
$$
\n
$$
sin \theta cos \theta d\theta = \frac{t}{b^{2}-a^{2}} d\theta
$$

$$
Q = \sqrt{2} \Rightarrow E = b
$$
\n
$$
Q = \sqrt{2} \Rightarrow E = b
$$
\n
$$
Q = \sqrt{2} \Rightarrow E = b
$$
\n
$$
Q = \sqrt{2} \Rightarrow E = b
$$
\n
$$
Q = \sqrt{2} \Rightarrow E = \frac{12}{b^2 - a^2} \Rightarrow \int_{a}^{b} t^2 dt
$$
\n
$$
= \frac{12}{b^2 - a^2} \left(\frac{t^3}{s}\right)_{a}^{b} = \frac{4}{b^2 - a^2} \left(\frac{b^3}{s^2 - a^3}\right)
$$
\n
$$
S = \frac{4(a^2 \times ab + b^2)}{a + b}
$$

2) For second part, wejust put a=b to get length of $x^{2/3}+y^{2/3}=a^{2/3}$

$$
S = \frac{4(a^{2} + a^{2} + a^{2})}{a + a} = \frac{12a^{2}}{2a} = 6a
$$

(iii) For the third pont,

the length of the astroid in the first guanount

$$
AB = \frac{S}{4} = \frac{6a}{4} = \frac{3}{2}a
$$
\n
$$
A B = \frac{S}{4} = \frac{6a}{4} = \frac{3}{2}a
$$
\n
$$
A 1000 \text{ the length } U \cup \theta \text{ of } H \text{ by } Q = \pi/3
$$
\n
$$
Q V C A C = \int_{0}^{\pi/3} \sqrt{9a^2 \sin^2 \theta \cos^2 \theta} d\theta \quad (P U + a = b \text{ in } Q)
$$

$$
= \int_{0}^{\frac{\pi}{3}} 3a \sin \theta \cos \theta \ d\theta
$$

\n0
\n
$$
= \int_{0}^{\frac{\pi}{3}} 3a \, \theta \ d\theta = 4
$$

\n
$$
= \int_{0}^{\frac{\pi}{3}} 3a \, \theta \ d\theta = 2
$$

\n
$$
= 3a \left(\frac{\theta^{2}}{2}\right)_{0}^{\frac{\pi}{3}/2}
$$

$$
CWCAC = \frac{3G}{2} \left(\frac{3}{4}\right) = \frac{99}{8}
$$

$$
C = C
$$

\n

4) Show that the length of the tractrix $x = a[\cos t + \log \tan(t/2)]$, $y = a \sin t$ from $t = \pi/2$ to any point t is $\overline{alog}\left(\sin t\right)$

So,
$$
x = 0
$$
 [cost + log tan $(\frac{t}{2})$]
\n
$$
\frac{d\alpha}{dt} = \alpha \left[-snct + \frac{1}{tan(\frac{t}{2})} \cdot \frac{sec^{2}(\frac{t}{2}) \cdot \frac{1}{2}}{2sin \frac{t}{2} \cos \frac{t}{2}} \right]
$$
\n
$$
= \alpha \left[-sint + \frac{1}{2sin \frac{t}{2} \cos \frac{t}{2}} \right]
$$
\n
$$
= \alpha \left[-sint + \frac{1}{sin t} \right]
$$
\n
$$
= \alpha \left[\frac{1-sin^{2}t}{sin t} \right] = \frac{\alpha \omega t^{2}t}{sin t}
$$
\n
$$
y = \alpha sin t
$$
\n
$$
\frac{dy}{dt} = \alpha \omega t^{2}t
$$
\n
$$
= \alpha^{2} cos^{2}t \left[\frac{cos^{2}t}{sin^{2}t} + \frac{a^{2} cos^{2}t}{sin^{2}t} \right]
$$
\n
$$
= \alpha^{2} cos^{2}t \left[\frac{cos^{2}t}{sin^{2}t} + \frac{a^{2} cos^{2}t}{sin^{2}t} \right]
$$
\n
$$
= \alpha^{2} cos^{2}t \left[\frac{cos^{2}t}{sin^{2}t} + \frac{a^{2} cos^{2}t}{sin^{2}t} \right]
$$

MODULE-4 Page 5

$$
\begin{bmatrix}\n\int \sin^{2}t \int \frac{\cos^{2}t + \sin^{2}t}{\sin^{2}t} d\tau\n\end{bmatrix}
$$
\n
$$
= a^{2} \cos^{2}t \left[\frac{\cos^{2}t + \sin^{2}t}{\sin^{2}t} \right]
$$
\n
$$
= a^{2} \frac{\cos^{2}t}{\sin^{2}t}
$$
\n
$$
\frac{t}{\sin^{2}t}
$$
\n
$$
\frac{t}{\sin t} \frac{\cos t}{\sin t} dt
$$
\n
$$
= \int_{\frac{\pi}{2}}^{1} 0 \frac{\cos t}{\sin t} dt
$$
\n
$$
= a \left[\log \sin t \right]_{\frac{\pi}{2}}^{1} = a \left[\log \sin t - \log \sin \frac{\pi}{2} \right]
$$

The required length = a log sint