APPLICATION OF DIFFERENTIAL EQUATIONS

Q.1 A chain coiled up near the edge of a smooth table starts to fall over the edge. The velocity v when a length x has fallen is given by $xv \frac{dv}{dx}$ $\frac{dv}{dx} + v^2 = gx$. Solve the Differential equation to express v in terms of x .

Solution: The given differential equation is
$$
xv \frac{dv}{dx} + v^2 = gx
$$
(1)
\nput $v^2 = y$ $\therefore 2v \frac{dv}{dx} = \frac{dy}{dx}$
\n \therefore From (1) $x(\frac{1}{2} \frac{dy}{dx}) + y = gx$
\n $\therefore \frac{dy}{dx} + (\frac{2}{x})y = 2g$
\nIt is linear differential equation with $P = \frac{2}{x}$ and $Q = 2g$
\n \therefore Its solution is $ye^{\int P dx} = \int Q \cdot e^{\int P dx} dx + c$
\n $ye^{\int \frac{2}{x} dx} = \int 2g \cdot e^{\int \frac{2}{x} dx} dx + c$
\n $yx^2 = \int 2g \cdot x^2 dx + c$
\n $yx^2 = \frac{2}{3}gx^3 + c$
\n $v^2x^2 = \frac{2g}{3}x^3 + c$

- **Q.2.** In a circuit containing inductance L , resistance R , and voltage E, the current i is given by $L \frac{di}{dt}$ $\frac{du}{dt}$ + Ri = E. Find the current *i* at time t if at $t = 0$, $i = 0$ and L, R, E are constants. **Solution:** The given equation $\frac{di}{dt} + \frac{Ri}{L}$ $\frac{Ri}{L} = \frac{E}{L}$ $\frac{E}{L}$ is linear of the type $\frac{dy}{dx} + Py = Q$ ∴ Its solution is $i \cdot e^{\int (R/L) dt} = \int \frac{E}{L}$ $\frac{E}{L} \cdot e^{\int (R/L) dt} dt + c$ $\therefore i \cdot e^{Rt/L} = \frac{E}{I}$ $\frac{E}{L}\int e^{Rt/L} dt + c = \frac{E}{L}$ $\frac{E}{L} \cdot e^{Rt/L} \cdot \frac{L}{R}$ $\frac{L}{R} + c = \frac{E}{R}$ $\frac{E}{R}e^{Rt/L}+c$ When $t = 0$, $i = 0$ ∴ $c = -\frac{E}{R}$ R $\therefore i \cdot e^{Rt/L} = \frac{E}{R}$ $\frac{E}{R}e^{Rt/L}-\frac{E}{R}$ $\frac{E}{R} = \frac{E}{R}$ $\frac{E}{R}\left(e^{Rt/L}-1\right)$ $\therefore i = \frac{E}{R}$ $\frac{E}{R}\left(1-e^{-Rt/L}\right)$
- **Q.3.** In a circuit containing inductance L resistance R and voltage E, the current *i* is given by

 $E = Ri + L \frac{di}{dt}$ If $L = 640h$, $R = 250 \Omega$ and $E = 500$ volts and $i = 0$ when $t = 0$, find the time that elapses before the current reaches 90% of its maximum value.

Solution: As in above example the current is given by $i = \frac{E}{R}$ $\frac{E}{R}\left(1-e^{-Rt/L}\right)$

Maximum value of *i* is *I*, can be obtained when $t \to \infty$

$$
\therefore I = \frac{E}{R} (1 - 0) = \frac{E}{R}
$$

When $i = 90\%$ if $I = \frac{9}{10} I = \frac{9E}{10R}$
We get $\frac{9}{10} \frac{E}{R} = \frac{E}{R} (1 - e^{-Rt/L})$
 $\frac{9}{10} = 1 - e^{-Rt/L}$

$$
e^{-Rt/L} = 1 - \frac{9}{10} = \frac{1}{10}
$$

\n
$$
e^{Rt/L} = 10
$$

\n
$$
Rt/L = \log 10
$$

\n
$$
t = \frac{L}{R} \log 10 \text{ sec}
$$

\n
$$
\therefore t = \frac{640}{250} \log 10 = 5.89 \text{ sec}
$$

Q.4. The charge q on the plate of a condenser of capacity C charged through a resistance R by the steady voltage V satisfies the differential equation $R \frac{dq}{dt}$ $\frac{dq}{dt} + \frac{q}{C}$ $\frac{q}{c} = V$. If $q = 0$ at $t = 0$, show that $q = CV(1 - e^{-t/RC})$. Find also the current flowing into the plate.

Solution: We are given that
$$
\frac{dq}{dt} + \frac{1}{RC} \cdot q = \frac{V}{R}
$$

\nThis is a linear differential equation of the type $\frac{dy}{dx} + Py = Q$
\nIts solution is $q \cdot e^{\int (1/RC)dt} = \int e^{\int (1/RC)dt} \cdot \frac{V}{R} dt + k$
\n $\therefore q \cdot e^{t/RC} = \int e^{t/RC} \cdot \frac{V}{R} dt + k = \frac{V}{R} \cdot \frac{e^{t/RC}}{(1/RC)} + k$
\nBy data when $t = 0, q = 0$ $\therefore k = -CV$
\n $\therefore q \cdot e^{t/RC} = CV \cdot e^{t/RC} - CV = e^{t/RC} (CV - CVe^{-t/RC})$
\n $\therefore q = CV(1 - e^{-t/RC})$
\nFurther $i = \frac{dq}{dt} = CV \cdot e^{-t/RC} \cdot \frac{1}{RC} = \frac{V}{R} \cdot e^{-t/RC}$

Q.5. An equation in the theory of stability of an aeroplane is $\frac{dv}{dt} = g \cos \alpha - kv$, v being velocity and g, k being constants. It is observed that at time $t = 0$, the velocity $v = 0$. Solve the equation completely.