- **Definition:** An equation of the form
- $x^n \frac{d^n}{dx^n}$ $\frac{d^n y}{dx^n} + p_1 \underline{x}^{n-1} \frac{d^n}{dx}$ $rac{d^{n-1}y}{dx^{n-1}} + p_2 x^{n-2} \frac{d^n}{dx^n}$ $\frac{d^{n-2}y}{dx^{n-2}} + ... + p_{n-1}x\frac{d}{dx}$ • $x^n \frac{d^n y}{dx^n} + p_1 x^{n-1} \frac{d^n y}{dx^{n-1}} + p_2 x^{n-2} \frac{d^n y}{dx^{n-2}} + \dots + p_{n-1} x \frac{d^n y}{dx^n}$
- where p_1, p_2, \ldots, p_n are constants and X is a function of x is called **homogeneous linear differential equation of order n**.
- The equation is also known as **Cauchy's equation.**

$$
f\circ x
$$
 example $\frac{x^{2}}{d^{2}y} - 3x \frac{dy}{dx} + 5y = sin(logx)$
 $\Rightarrow \frac{d^{2}y}{dx^{2}} - 9\frac{dy}{dx} + 8y = X$

METHOD OF SOLUTION

The equation can be transformed into an equation with constant coefficients by the substitution • $z = log x \textbf{ or } x = e^z$ \sim \sim \sim \sim

Now,
$$
\therefore z = \log x, \frac{dz}{dx} = \frac{1}{x}
$$
 and
\n $\frac{dy}{dx} = \frac{dy}{dz}, \frac{dz}{dx} = \frac{1}{x}, \frac{dy}{dz}$
\n $\frac{dz}{dx} = \frac{1}{x} \cdot \frac{dy}{dz}$
\n $\frac{dz}{dx} = -\frac{1}{x^2} \cdot \frac{dy}{dz} + \frac{1}{x} \cdot \frac{d^2y}{dz^2} \cdot \frac{dz}{dx} = -\frac{1}{x^2} \cdot \frac{dy}{dz} + \frac{1}{x^2} \cdot \frac{d^2y}{dz^2} = \frac{1}{x^2} (\frac{d^2y}{dz^2} - \frac{dy}{dz})$ (ii)
\n $\frac{dy}{dx} = \frac{1}{x^2} \frac{dy}{dz} \implies \qquad \qquad \frac{dy}{dx} = \frac{dy}{dz}$
\n $\frac{d^2y}{dx^2} = -\frac{1}{y^2} \frac{dy}{dz} + \frac{1}{x} \cdot \frac{d}{dz} (\frac{dy}{dz}) = -\frac{1}{y^2} \frac{dy}{dz} + \frac{1}{x} \cdot \frac{d}{dz} (\frac{dy}{dz}) \cdot \frac{dz}{dx}$
\n $\frac{d^2y}{dx^2} = -\frac{1}{y^2} \frac{dy}{dz} + \frac{1}{y} \cdot \frac{d}{dz} (\frac{dy}{dz}) = -\frac{1}{y^2} \frac{dy}{dz} + \frac{1}{y} \cdot \frac{d}{dz} (\frac{dy}{dz}) \cdot \frac{dz}{dx}$
\n $\frac{d^2y}{dx^2} = -\frac{1}{y^2} \frac{dy}{dz} + \frac{1}{y} \cdot \frac{d^2y}{dz^2} - \frac{1}{y^2} (\frac{d^2y}{dz^2} - \frac{dy}{dz})$
\n $\Rightarrow \qquad \qquad \frac{d^2y}{dx^2} = \frac{d^2y}{dz^2} - \frac{dy}{dz}$
\n $\Rightarrow \qquad \qquad \frac{d^2y}{dx^2} = \frac{d^2y}{dz^2} - \frac{dy}{dz}$
\n $\Rightarrow \qquad \qquad \frac{d^2y}{dx^2} = \frac{d^2y}{dz^2} + 2\frac{dy}{dz}$

• If we put $D=\frac{d}{d}$ $\frac{u}{v}$ then we get, from (i), (ii), (iii),

- Similarly, it can be shown that $\frac{1}{dx}$ $\overline{x^3}\left(\overline{dz}\right)$ $\frac{1}{dz^3} - 3\frac{1}{dz}$ $\frac{1}{dx^3} = \frac{1}{x^3}$ $\frac{1}{dz^2} + \angle \frac{1}{d}$ $\frac{1}{dz}$ $\frac{1}{z}$ $\frac{1}{z}$ • If we put $D = \frac{d}{dt}$ $\frac{u}{dz}$ then we get, from (i), (ii), (iii), • $x \frac{d}{d}$ $\frac{dy}{dx} = \frac{d}{dt}$ $= D^3y - 3D^2y + 2Dy$ $rac{a}{d}$ • $x^2 \frac{d^2}{dx^2}$ $\frac{d^2y}{dx^2} = \frac{d^2}{dz}$ $\frac{d^2y}{dz^2} - \frac{d}{d}$ $\frac{dy}{dz} = D^2$ • $x^3 \frac{d^3}{dx}$ $\frac{d^3y}{dx^3} = \frac{d^3}{dz}$ $\frac{d^3y}{dz^3} - 3\frac{d^2}{dz}$ $\frac{d^2y}{dz^2} + 2\frac{d}{d}$ $\frac{dy}{dz} = D^3 y - 3D^2 y + 2Dy = D(D-1)(D-2)y$ and so on. $y^4 \frac{dy}{dx} = D(D-D(D-2)(D-3)y$
- Further the r.h.s. X by the substitution of $x = e^z$ changes to a function of z only say Z.
- Thus, the given equation by the substitution $x = e^z$ changes to a linear differential equation with constant coefficients of the form $f(D)y = Z$ and can be solved by the methods studied in the previous exercise.

EXAMPLE-1:
$$
x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 5y = \sin(\log x)
$$

\n $3e^{x}y^2$ $\Rightarrow e^x = 2 \text{ and } \frac{dy}{dx} = 0$ we get
\n $x \frac{dy}{dx} = 0y$ and $x^2 \frac{d^2y}{dx^2} = D(D-1)y$
\n $\frac{dy}{dx} = 0y$ and $x^2 \frac{d^2y}{dx^2} = D(D-1)y$
\n $\frac{dy}{dx} = D(0-1)y - 3by + 5y = \sin z$
\n $\frac{d^2y}{dy} - 4by + 5y = \sin z$
\n $\frac{dy}{dx} - 4by + 5y = \sin z$
\n $\frac{dy}{dx} = 3s - \frac{w^2 - 4m + 5}{m + 5} = 0$
\n $m = 2 \pm 1$
\n $\therefore y_c = e^{\frac{2z}{c}} (C_1 \cos z + C_2 \sin z)$
\n $P\cdot I = 3p = \frac{1}{p^2 - 4p + 5} \sin z$

$$
Sub B2 = -(132) = -1
$$

\n
$$
= \frac{1}{4-40} sin Z
$$

\n
$$
= \frac{1(1+D)}{4(1-D)(1+D)}
$$
 sinZ
\n
$$
= \frac{1}{4}(1+D) \cdot \frac{1}{1-D^{2}} sin Z
$$

\n
$$
Put B2 = -1
$$

\n
$$
= \frac{1}{4}(1+D) \cdot \frac{1}{1-2} sin Z
$$

\n
$$
Put B2 = -1
$$

\n
$$
= \frac{1}{4}(1+D) \cdot \frac{1}{1-2} sin Z = \frac{1}{8}(1+D) sin Z
$$

\n
$$
y_{P} = \frac{1}{8}(sin Z + cos Z)
$$

\n
$$
y_{P} = \frac{2}{8}(2inz + cos Z)
$$

\n
$$
x e_{SUSH} + u + in q Z = log Z
$$

\n
$$
y = x^{2}[C_{1}cos (log x) + C_{2}sin (log x)]
$$

\n
$$
+ \frac{1}{8}[sin (log x) + cos (log x)]
$$

EXAMPLE-2: $x^3 \frac{d^3}{dx^3}$ $\frac{d^3y}{dx^3} - x^2 \frac{d^2}{dx}$ $\frac{d^2y}{dx^2} + 2x\frac{d}{d}$ $\frac{dy}{dx} - 2y = x^3 + 3x.$ $x \frac{dy}{dx} = Dy$, $x^2 \frac{d^2y}{dx^2} = D(D-1)y$, $x^3 \frac{d^3y}{dx^3} = D(D-1)(D-2)y$ The given D.E. changes to

D(D-1) (D-2)Y - D(D-1)Y +2DY - 2Y =
$$
e^{3Z} + 3e^{Z}
$$

\n $(B^3 - 4B^2 + 5D - 2)Y = e^{3Z} + 3e^{Z}$
\nA=E is $m^3 - 4m^2 + 5m - 2 = 0$
\n $m = 1, 2$
\nThe C·F is $Y_c = (C_1 + C_2 z) e^z + C_3 e^{2Z}$
\n $f \cdot f = Y_c = \frac{1}{D^3 - 4B^2 + 5D - 2} (e^{3Z} + 3e^Z)$
\n $= \frac{1}{D^3 - 4B^2 + 5D - 2} e^{3Z} + 3 \frac{1}{2} \frac{e^Z}{e^Z}$
\n $p \cdot v = 3$ $p \cdot v = D = 1$
\ndenominator becomes

put D = 1, deponsinater = 0

$$
= \frac{1}{4}e^{3z} + 3z^{2}e^{z}
$$

= $\frac{1}{4}e^{3z} + 3z^{2}e^{z}$
 $\sqrt{9}e^{x}e^{z}$

 $3 = 9c + 9p$ = $(C_{1} + C_{2} - C_{1}e^{2} + C_{2}e^{2} + C_{2}e^{3} - 3 - C_{2}e^{2})$

$$
= (C_{1} + C_{2}e)^{2} + C_{3}e^{2} + \frac{1}{4}e^{52} - \frac{3}{2}e^{2}e^{2}
$$

\n
$$
Resubstituting z = log \gamma, \quad x = e^{2}
$$

\n
$$
= [C_{1} + C_{2}(log \gamma)] \gamma + C_{3} \gamma^{2} + \frac{1}{4} \gamma^{3} - \frac{3}{2} \gamma (log \gamma)^{2}
$$

\nEXAMPLE-3: $x^{2} \frac{d^{3}y}{dx^{2}} - 3x \frac{dy}{dx} + y = \frac{(sin log x) + 1}{x}$
\n
$$
= 500^{9}
$$
.
\n
$$
Pu + z = log \gamma
$$
 $u^{2} \frac{d^{2}y}{dx^{2}} = DCD - 1) y$
\n
$$
= 0
$$

\n
$$
= 0
$$

 $\frac{1}{e^{2}sinz} = \frac{e^{2}}{e^{2}} \cdot \frac{1}{e^{2}}$

$$
\frac{1}{D^2 - 4D + 1} \overline{e}^2 \sin z = \overline{e}^2 \cdot \frac{1}{(D-1)^2 - 4(D-1) + 1} \sin z
$$

$$
= e^{-2} \cdot \frac{1}{b^2 - 6D + 6}
$$

= $e^{-2} \cdot \frac{1}{5 - 6D}$ sin 2
= $e^{-2} \cdot \frac{1}{5 - 6D}$ sin 2

$$
= \frac{e^{2} \left(5+6D\right)}{25-36D^{2}}
$$
sin2

$$
= \frac{e^{2}}{61} \left(5+6D\right) sin 2
$$

$$
=\frac{e^{2}}{6!}\left[5\sin 2+6\cos 2\right]
$$

$$
3\rho = \frac{e^{2}}{61} \left[5sin z + 6cos z \right] + \frac{1}{6} e^{z}
$$

$$
y = y_{c} + y_{P}
$$

= $\frac{2^{2}}{e^{2}} \left[C_{1} cosh(\sqrt{3}z) + C_{2} sinh(\sqrt{3}z) \right]$
= $\frac{-2}{6!} \left[5 sinz + 6 cosz \right] + \frac{1}{6} \frac{1}{e^{2}}$
 $z = log x , \eta = e^{2}$

 $\overline{}$

$$
y = x^{2} [C_{1}Cosh(\sqrt{3}logx) + C_{2}sinh(\sqrt{3}logx)]
$$

 $-\frac{1}{61x}[5sin(logx) + 6cos(logx)] + \frac{1}{6x}$

EXAMPLE-4: $x^2 \frac{d^2}{dx^2}$ $\frac{d^2y}{dx^2} + x\frac{d}{d}$ $rac{a}{d}$