METHOD OF VARIATION OF PARAMETERS

Sunday, April 24, 2022 11:24 AM

This is one of the methods for finding the Particular Integral (P.I.) of a linear differential equation whose Complimentary function (C.F.) is known.

Though the method is general, we will illustrate it by applying it to a second order and third order differential equation.

(1) Consider the linear equation of second order with constant coefficients. aD^2

i.e.
$$
(aD^2 + bD + c) y = X
$$
 $\qquad \qquad \int_{\sqrt{D} \setminus \sqrt{D}} \sqrt{2} dx$ $\qquad \qquad \mathbb{M} = \int_{y_1}^{y_2} \frac{y_1}{y_2} dx$ $\qquad \qquad W = \int_{y_1}^{y_2} \frac{y_2}{y_2} dx$ $\qquad \qquad W = \begin{vmatrix} y_1 & y_2 \\ y_1^2 & y_2 \end{vmatrix} \rightarrow W$

 \therefore General solution = Complementary function + Particular Integral.

$$
\frac{d^2y}{dx^2} + a^2y = \frac{secax}{dx}
$$

A.F is
$$
m^2 + a^2 = 0
$$
 $\Rightarrow m = \pm a$;
\n $\therefore C.F = y_c = C_1 cosan + C_2 sinan$
\n $= C_1 y_1 + C_2 y_2$
\n $\therefore y_1 = cosan, y_2 = sinan$

$$
let \quad pI = \quad U \quad y_1 + U \quad y_2
$$

Now
$$
W = \begin{vmatrix} y_1 & y_2 \\ y_1^2 & y_2^2 \end{vmatrix} = \begin{vmatrix} \cos \alpha x & \sin \alpha x \\ -\alpha \sin \alpha x & \alpha \cos \alpha x \end{vmatrix} =
$$

 $\alpha \cos^2 \alpha x + \sin^2 \alpha x$

$$
w = \alpha
$$

Now $u = -\int \frac{y_2 x}{w} dw = -\int \frac{\sin ar \cdot \sec ar}{a} dr$

$$
= \frac{-1}{a} \int \tan \alpha \, d\alpha = \frac{-1}{a} \left[\frac{\log |\sec \alpha m|}{\alpha} \right]
$$

$$
= \frac{1}{a^2} \log |\cos \alpha m|
$$

MODULE-1 Page 1

$$
V = \int \frac{y_1 x}{w} dm = \int \frac{cos a \pi \cdot sec a \pi}{\alpha} dx
$$

$$
= \frac{1}{a} \int dm = \frac{\pi}{a}
$$

$$
\therefore y_1 = \frac{\pi}{2} = 0 \text{ and } y_1 = \frac{\pi}{a} \text{ for all } a \in \mathbb{Z}
$$

$$
+ \frac{\pi}{a} \text{ for all } a \in \mathbb{Z}
$$

$$
\therefore \text{Complele solution} = 9c + 9p
$$
\n
$$
= 1 \text{ (coson log}(\cos on) + \frac{1}{a^{2}} \cos on \cos on)
$$
\n
$$
= 1 \text{ (coson log}(\cos on) + \frac{1}{a^{2}} \sin on
$$

$$
\begin{array}{lll}\n\textcircled{1} & \textcircled{2} & \textcircled{3} & -10+2 & \textcircled{3} & = & e^{\eta} \text{ term} \\
\hline\n\text{San}^{n} & \textcircled{4} & \textcircled{5} & \textcircled{6} & \textcircled{7} & \textcircled{8} & \textcircled{8} \\
& \textcircled{6} & \textcircled{7} & \textcircled{8} & \textcircled{9} & \textcircled{1} & \textcircled{1} \\
& \textcircled{7} & \textcircled{8} & \textcircled{9} & \textcircled{1} & \textcircled{1} & \textcircled{1} \\
& \textcircled{8} & \textcircled{9} & \textcircled{1} & \textcircled{1} & \textcircled{1} & \textcircled{1} & \textcircled{1} \\
& \textcircled{9} & \textcircled{1} & \textcircled{1} & \textcircled{1} & \textcircled{1} & \textcircled{1} & \textcircled{1} \\
& \textcircled{1} \\
& \textcircled{1} \\
& \textcircled{1} \\
& \textcircled{1} \\
& \textcircled{1} & \textcircled{1} & \textcircled{2} & \textcircled{1} & \textcircled{2} & \textcircled{1} & \textcircled{1} & \text
$$

 $\gamma \sim$

 \hat{z}

MODULE-1 Page 2

 \overline{a}

$$
\int w \int e^{x}x
$$

\n
$$
= -\int \frac{\sin^{2}x}{\cos x} \, dx = -\int \frac{1-\omega^{2}x}{\cos x} \, dx
$$

\n
$$
= -\int \sec x \, dx + \int \cos x \, dx
$$

\n
$$
u = -\log|\sec x + \tan x| + \sin x
$$

\n
$$
x = \int \frac{y_{1}x}{w} = \int \frac{e^{x}(\cos x - e^{x} \tan x)}{e^{2x}} \, dx
$$

$$
V = \int \sin m dm = -\cos n
$$

$$
\therefore 9p = 0.9, +192
$$

= $e^{\gamma}cos\theta \left(-log|sec\pi + tan\pi| + sin\pi|$
+ $e^{\gamma}sin\pi (-cos\pi)$

$$
Y_{\rho}=-e^{\alpha}cos\alpha log|sec\pi+tan\pi|
$$

$$
1.2 \text{Cov}_1^2
$$

= C₁ e¹ cos π + C₂ e¹¹ sin π - e¹¹ cos π log (sentbin)

$$
\frac{d^{2}y}{dx^{2}} + 3\frac{dy}{dx} + 2y = e^{x}
$$
\n
$$
x + y = 0
$$
\n
$$
x + z = 0
$$
\n
$$
y = -1 - 2
$$
\n
$$
y = 0 + \frac{1}{2} - 2
$$
\n
$$
y = 0 + \frac{1}{2} - 2
$$
\n
$$
y = 0 + \frac{1}{2} - 2
$$
\n
$$
y = 0 + \frac{1}{2} - 2
$$
\n
$$
y = 0 + \frac{1}{2} - 2
$$
\n
$$
y = 0 + \frac{1}{2} - 2
$$

$$
31 = e^{x}
$$
\n
$$
32 = e^{x}
$$
\n
$$
33 = e^{x}
$$
\n
$$
34 = e^{x}
$$
\n
$$
35 = e^{x}
$$
\n
$$
36 = e^{x}
$$
\n
$$
37 = e^{x}
$$
\n
$$
38 = e^{x}
$$
\n
$$
39 = e^{x}
$$
\n
$$
30 = e^{x}
$$
\n
$$
31 = e^{x}
$$
\n
$$
33 = 2e^{x}
$$
\n<

 $y = y_c + y_2$
= $C_1 e^{-y} + C_2 e^{-2x} + e^{2y} e^{x}$

(2) Consider the linear equation of third order with constants coefficient $aD^3y + bD^2$ i.e. $(aD^3 + bD^2)$

Let Complementary function = $c_1 y_1 + c_2 y_2 + c_3 y_3$ then Particular Integral = $uy_1 + vy_2 + wy_3$ where $(y_2y'_3 - y_3y'_2)$ $\frac{(y_2y'_3 - y_3y'_2)x}{w} dx$, $v = \int \frac{(y_3y'_1 - y_1y'_3)}{w} dx$ $\frac{(y_3y'_1 - y_1y'_3)x}{W}dx$, $w = \int \frac{(y_1y'_2 - y_2y'_1)}{W}dx$ $\frac{(y_1y_2)}{W}$ Where \mathcal{Y} y'_1 y'_2 y'_3 y_1'' y_2'' y_3'

General Solution = Complementary function + Particular Integral.

$$
\frac{10^{3}+40^{3}y=4.00222}{6.5} = 0.521
$$
\n
$$
\frac{561^{9}}{6.5} = 0.521 = 0.521 + 0.521 = 0.521 + 0.521 = 0.521 + 0.521 = 0.521 + 0.521 = 0.521 + 0.521 = 0.521 + 0.521 = 0.521 + 0.521 = 0.521 + 0.521 = 0.521 + 0.521 = 0.521 + 0.521 = 0.521 + 0.521 = 0.521 + 0.521 = 0.521 + 0.521 =
$$

$$
3.312
$$
, 9220329 , 932

$$
W = \begin{vmatrix} 91 & 92 & 93 \\ 91 & 92 & 93 \\ 91 & 92 & 93 \\ 91 & 92 & 93 \\ 91 & 92 & 93 \end{vmatrix} = \begin{vmatrix} 1 & 10524 & 51124 \\ 0 & -251124 & 210524 \\ 0 & -410524 & -451124 \end{vmatrix}
$$

$$
\leq 8(\omega^{2}2^{\alpha}+sin^{2}\omega)=8
$$

$$
PI = Yp = Uy_1 + Uy_2 + wy_3
$$

\nNow $U = \int \frac{(y_2 y_3^1 - y_3 y_1^1) x}{W} dx$
\n
$$
= \int \frac{[cos2\pi \cdot (2cos2\pi) - sin2\pi (-2sin2\pi)]4i\pi z}{8} dx
$$

\n
$$
W = \int (0 + 2\pi dx) = \frac{1}{2} log |sin2\pi|
$$

MODULE-1 Page 5

$$
3p = Uy_1 + Uy_2 + Wy_3
$$

= $\frac{1}{2}log |sin 2\pi| + cos 2\pi \cdot (-\frac{1}{2}) \cdot (cos 2\pi - cot 2\pi)$
+ $cos 2\pi$

 $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$

$$
w = \int \frac{(y_1y_2^3 - y_2y_1^3)}{w} \cdot x dx
$$

= $\int \frac{((y_1(-2sin2\pi) - cos2\pi to))}{8} \cdot 2y cos2\pi at$
 $w = -\int cos2\pi dx = -\frac{1}{2} sin2\pi$

$$
y = -\frac{1}{2}log(cos(\pi - cot^{2}x)) - \frac{1}{2}cos^{2}x
$$

 $z = \int$ EDSEC 2nd at \int Sin 2nd dr

$$
z = \int \frac{\cos^{2}2\pi}{\sin^{2}\pi} d\pi = \int \frac{1-\sin^{2}2\pi}{\sin^{2}\pi} d\pi
$$

$$
= \int \frac{(\sin n(0) - (1) (2(\cos n))}{8} \cdot \ln(\cot 2n) \, d\pi
$$

$$
V = \int \frac{(y_3 y_1' - y_1 y_3')}{W} \times dm =
$$

$$
= \frac{1}{2} \log |sin 2\pi| - \frac{1}{2} cos 2\pi |cos |cos 2\pi - cot 2\pi|
$$

$$
- \frac{1}{2} (cos^{2}2\pi + sin^{2}2\pi)
$$

$$
- \frac{1}{2} (cos^{2}2\pi + sin^{2}2\pi)
$$

$$
- \frac{1}{2} (cos 2\pi |cos |cos 2\pi - cot 2\pi|)
$$

:
$$
compose
$$

$$
y=9c+9p
$$

= C_1 $4 \times 2 \times 0.527 \times 10^{-2} \times 20.527 \times 109$ [cosec2m-cot2m]
+ $\frac{1}{2} \times 9$ [sin2m] - $\frac{1}{2}$
= $\frac{1}{2}$ [cos2m + $\frac{1}{2} \times 09$] [sin2m]

$$
y = C + C_{1}C_{0}32n + C_{3}sin2n + \frac{1}{2}log|sin2n|
$$

- $\frac{1}{2}cos2n log|cos22n - cot2n|$
 $\left(c = C_{1} - \frac{1}{2}\right)$