EXACT DIFFERENTIAL EQUATIONS:

Definition : A differential equation which is obtained from its primitive differentiation only and without any operation of elimination or reduction is called an **exact differential equation**.

If u = c where u is a function of x and y is primitive then $du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy = 0$ is an exact differential equation. Thus, an exact differential equation is obtained from its promitive by equating its total differential to zero.

For example, If $u = x^2 + y^2 = c$ then $du = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy = 2xdx + 2ydy$

Equating du = 0, we get the equation x dx + y dy = 0 which is exact.

The Necessary and Sufficient Condition for equation Mdx + Ndy = 0 to be exact is $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ i.e. If the equation M dx + N dy = 0 is exact, then $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ and conversely if $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ then M dx + N dy = 0 is exact.

Rule for finding the solution:

Rule 1: Integrate M w.r.t x treating y constant and Integrate only those terms in N which are free from x w.r.t. y. Equate the sum to a constant. This is the solution.

In symbols, $\int M dx$ (treating y constant) + $\int (Terms \text{ in } N \text{ free from } x) dy = c$.

Rule 2: Integrate N w.r.t y treating x constant and Integrate only those terms in M which are free from y w.r.t. x. Equate the sum to a constant. This is the solution.

In symbols, $\int N \, dy$ (treating x constant) + $\int (Terms \text{ in } M \text{ free from } y) \, dx = c$.

EXAMPLES:

1. $x \, dx + y \, dy = \frac{a(x \, dy - y \, dx)}{x^2 + y^2}$ Solution: The equation can be written as $\left\{x + \frac{ay}{x^2 + y^2}\right\} dx + \left\{y - \frac{ax}{x^2 + y^2}\right\} dy = 0$ $\therefore M = x + \frac{ay}{x^2 + y^2}, \quad \therefore \frac{\partial M}{\partial y} = \frac{a}{x^2 + y^2} - \frac{2ay^2}{(x^2 + y^2)^2} = \frac{ax^2 - ay^2}{(x^2 + y^2)^2}$ $\therefore N = y - \frac{ax}{x^2 + y^2}, \quad \therefore \frac{\partial N}{\partial x} = -\frac{a}{x^2 + y^2} + \frac{2ax^2}{(x^2 + y^2)^2} = \frac{ax^2 - ay^2}{(x^2 + y^2)^2}$ Since $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$, the equation is exact Now, $\int M \, dx = \int x \, dx + ay \int \frac{dx}{x^2 + y^2} = \frac{x^2}{2} + ay \cdot \frac{1}{y} \tan^{-1}\left(\frac{x}{y}\right) = \frac{x^2}{2} + a \cdot \tan^{-1}\left(\frac{x}{y}\right)$ And $\int (\text{terms in } N \text{ free from } x) \, dy = \int y \, dy = \frac{y^2}{2}$ \therefore This solution is $\frac{x^2}{2} + \frac{y^2}{2} + a \tan^{-1}\left(\frac{x}{y}\right) = c$ i.e. $x^2 + y^2 + 2a \tan^{-1}\left(\frac{x}{y}\right) = c$ 2. $2(1 + x^2\sqrt{y})ydx + (x^2\sqrt{y} + 2)x \, dy = 0$ Solution: Here, $M = 2y + 2x^2y^{3/2}; N = x^3\sqrt{y} + 2x$ $\therefore \frac{\partial M}{\partial y} = 2 + 3x^2y^{1/2}; \frac{\partial N}{\partial x} = 3x^2\sqrt{y} + 2$ $\therefore \frac{\partial M}{\partial y} = \frac{\partial (2y + 2x^2y^{3/2})}{2} \, dx = 2xy + \frac{2}{3}x^3y^{3/2}$ And $\int (\text{terms in } N \text{ free from } x) \, dy = \int 0 \cdot dy = 0$

3.
$$\frac{y}{x^2} \cos\left(\frac{y}{x}\right) dx - \frac{1}{x} \cos\left(\frac{y}{x}\right) dy + 2x dx = 0$$

Solution: We have $\left[2x + \frac{y}{x^2} \cos\left(\frac{y}{x}\right)\right] dx + \left[-\frac{1}{x} \cos\frac{y}{x}\right] dy = 0$
 $\therefore M = 2x + \frac{y}{x^2} \cos\frac{y}{x} \text{ and } N = -\frac{1}{x} \cos\frac{y}{x}$
 $\therefore \frac{\partial M}{\partial y} = \frac{1}{x^2} \cos\left(\frac{y}{x}\right) - \frac{y}{x^2} \sin\left(\frac{y}{x}\right) \cdot \frac{1}{x}; \frac{\partial N}{\partial x} = \frac{1}{x^2} \cos\left(\frac{y}{x}\right) - \frac{1}{x} \sin\left(\frac{y}{x}\right) \cdot \frac{y}{x^2}$
Since $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$, the equation is exact
 $\therefore \int M \, dx = \int \left(2x + \frac{y}{x^2} \cos\frac{y}{x}\right) dx = \int 2x \, dx + \int \cos\left(\frac{y}{x}\right) \cdot \frac{y}{x^2} dx = x^2 + I_2$
For I_2 , put $\frac{y}{x} = t, -\frac{y}{x^2} dx = dt$
 $\therefore \int M \, dx = x^2 - \int \cos t \, dt = x^2 - \sin t = x^2 - \sin\left(\frac{y}{x}\right)$
 $\int (\text{terms in } N \text{ free from } x) \, dy = 0$
 \therefore The solution is $x^2 - \sin\frac{y}{x} = c$

4.
$$(1 + e^{x/y})dx + e^{x/y}(1 - \frac{x}{y})dy = 0$$
, given $y(0) = 4$
Solution: Here $M = 1 + e^{x/y}$, $N = e^{x/y}(1 - \frac{x}{y})$
 $\therefore \frac{\partial M}{\partial y} = e^{x/y}(-\frac{x}{y^2}); \frac{\partial N}{\partial x} = e^{x/y} \cdot \frac{1}{y}(1 - \frac{x}{y}) - e^{x/y}(\frac{1}{y}) = e^{x/y}(-\frac{x}{y^2})$
 $\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$. The equation is exact
 $\therefore \int M dx = \int (1 + e^{x/y}) dx = x + ye^{x/y}$
 $\int (\text{terms in } N \text{ free from } x) dy = \int 0 dy = 0$
 \therefore The solution is $x + ye^{x/y} = c$
By data when $x = 0, y = 4$ $\therefore 4 = c$

The particular solution is $x + ye^{x/y} = 4$