Corollary -1 Friday, January 28, 2022 2:45 PM

Corollary 1 If z is a homogeneous function of two variables x and y of degree n then

$$x^{2}\frac{\partial^{2}z}{\partial x^{2}} + 2xy\frac{\partial^{2}z}{\partial x^{2}} = n(n-1)z$$

* If u is a homogeneous function of 3 Vaniahles n, y, z
of degree n then
 $n^{2}\frac{\partial^{2}u}{\partial n^{2}} + y^{2}\frac{\partial^{2}u}{\partial y^{2}} + z^{2}\frac{\partial^{2}u}{\partial z^{2}} + 2my\frac{\partial^{2}u}{\partial n^{2}y} + 2yz\frac{\partial^{2}u}{\partial y\partial z} + 2mz\frac{\partial^{2}u}{\partial y\partial z}$
SOME SOLVED EXAMPLES:
1. If $u = (x/y)^{y/x}$, prove that $x^{2}\frac{\partial^{2}u}{\partial z^{2}} + 2xy\frac{\partial^{2}u}{\partial z^{2}} + y^{2}\frac{\partial^{2}u}{\partial z^{2}} = 0$.
Som: $f(mt_{1}, yt_{1}) = \left(\frac{mt}{yt}\right)^{M/nt} = \left(\frac{x}{y}\right)^{\frac{N}{2}} = t^{0}f(m, y)$
 $\therefore u$ is homogeneous function of deg $n = 0$
 $\therefore By (crohomy - 1)$
 $N^{2}\frac{\partial^{2}u}{\partial x^{2}} + 2xy\frac{\partial^{2}u}{\partial z^{2}} + 2xy\frac{\partial^{2}u}{\partial z^{2}} = 6\left(\frac{x^{3}y+y^{3}x}{y-x}\right)$
Sol^h u is homogeneous function of deg $n = 3$
 $\therefore By (crohomy - 1)$
 $N^{2}\frac{\partial^{2}u}{\partial x^{2}} + 2my\frac{\partial^{2}u}{\partial z^{2}} + y^{2}\frac{\partial^{2}u}{\partial y^{2}} = n(n-1)u = 3(3-1)u$
 $N^{2}\frac{\partial^{2}u}{\partial x^{2}} + 2my\frac{\partial^{2}u}{\partial x^{3}} + y^{2}\frac{\partial^{2}u}{\partial y^{2}} = n(n-1)u = 3(3-1)u$
3. If $u = x^{2}tan^{-1}\frac{x}{x}+y^{2}sin^{-\frac{x}{x}}$, prove that $x^{2}\frac{\partial^{2}u}{\partial x^{3}} + y^{2}\frac{\partial^{2}u}{\partial x^{3}} + y^{2}\frac{\partial^{2}u}{\partial y^{2}} = n(n-1)u = 3(3-1)u$
3. If $u = x^{2}tan^{-\frac{x}{x}} + y^{2}sin^{-\frac{x}{x}}$, prove that $x^{2}\frac{\partial^{2}u}{\partial x^{2}} + 2xy\frac{\partial^{2}u}{\partial x^{3}} + y^{2}\frac{\partial^{2}u}{\partial y^{2}} = 2u$

.

$$\begin{array}{l} \therefore By \ (\operatorname{orollavy-1} \\ LMS = n(n-1)u = 2(1-1)u = 2u \\ \begin{array}{l} 4. \ \text{fr}_{z} = x^{n}f\left(\frac{x}{z}\right), \text{prove that } x^{\frac{n}{2}+2}x^{\frac{n}{2}+2}y^{\frac{n}{2}+2}y^{\frac{n}{2}+2}y^{\frac{n}{2}+2}y^{\frac{n}{2}+2}y^{\frac{n}{2}+2}y^{\frac{n}{2}+2}z^{\frac$$

^

$$m^{2}\frac{\partial^{2}z}{\partial n^{2}} + 2my\frac{\partial^{2}z}{\partial n^{2}y} + y^{2}\frac{\partial^{2}z}{\partial y^{2}} + n\frac{\partial^{2}z}{\partial n^{2}} + y^{2}\frac{\partial^{2}z}{\partial y^{2}} = n^{2}(u+v)$$
$$= n^{2}(u+v)$$
$$= n^{2}Z$$

$$\frac{y}{y} = \frac{y}{x} + \frac{y}{y} + \frac{y}$$

6. If
$$u = y^2 e^{\frac{y}{x}} + x^2 \tan^{-1}\left(\frac{x}{y}\right)$$
, show that $xu_x + yu_y = 2u$ and $x^2 u_{xx} + 2xyu_{xy} + y^2 u_{yy} = 2u$
Solf:- u is homogeneous with deg $n = 2$ (Show this)
 $u_n \rightarrow \frac{\partial u}{\partial n}$, $u_y \rightarrow \frac{\partial u}{\partial y}$, $u_{nn} \rightarrow \frac{\partial^2 u}{\partial n^2}$, $u_{ny} \rightarrow \frac{\partial^2 u}{\partial n^2 y}$, $u_{yy} \rightarrow \frac{\partial^2 u}{\partial y^2}$
 \therefore By Euler's thm
 $n \frac{\partial u}{\partial n} + y \frac{\partial u}{\partial y} = nu = nu = nu + y u_y = 2u$
By corollary -1
 $n^2 \frac{\partial^2 u}{\partial n^2} + 2ny \frac{\partial^2 u}{\partial n^2 y} + y^2 \frac{\partial^2 y}{\partial y^2} = n(n-1)u$
 $n^2 u_{nm} + 2ny u_{ny} + y^2 u_{yy} = 2(2-1)u = 2u$.