HOMOGENEOUS FUNCTIONS

Monday, January 24, 2022 1:30 PM

Homogeneous Functions:

A function $u = f(x, y)$ is said to be homogeneous function of degree n, if $u = x^n f\left(\frac{y}{x}\right)$ $\frac{y}{x}$) where, <u>n</u> is real number **Note:** Degree of a homogeneous function $u = f(x, y)$ can be obtained by replacing x by xt and y by yt and if $f(xt, yt) = t^n f(x, y) = t^n u$ then u is a homogeneous function of degree

Same method can be extended for a function of more than two variables

A function $f(x, y, z)$ is called a homogeneous function of degree n if by putting $X = xt$, $Y = yt$, $Z = zt$ the function $f(X,Y,Z)$ becomes $t^n f(x,y,z)$ i.e. $f\bigl(xt,yt,zt\bigr) = t^n$

e.g. $f(x, y, z) = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$ is a homogeneous function of degree 2.

EULER'S THEOREM:

 $\overline{\mathscr{S}}$

If u is a homogeneous function of two variables x and y of degree $\frac{1}{4}$ then $\left(x\frac{\partial}{\partial x}\right)$ ∂

EULER'S THEOREM FOR A FUNCTION OF THREE VARIABLES:

Theorem: If u is a homogeneous function of three variables x, y, z of degree n then $x \frac{\partial}{\partial x}$ д ∂ д ∂ ∂

 ∂ ∂

Note: In general, if u is a homogeneous function of x, y, z ….. t of degree n then Euler's Theorem states that $x\frac{\partial}{\partial x}$ ∂ ∂ ∂ ∂ ∂ ∂ ∂

SOME SOLVED EXAMPLES:

1. If
$$
u = e^{x/y} \sin(\frac{x}{y}) + e^{y/x} \cos(\frac{y}{x})
$$
, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 0$.
\n $u = \pm \sqrt{3}$, $y \neq 0$
\n $u = \pm \sqrt{3}$, $y \neq 0$
\n $u = \pm \sqrt{3}$, $y \neq 0$
\n $u = \pm \sqrt{3}$
\n $u = \frac{3}{7}$
\n $u = \frac{3}{$

2. If
$$
u = \frac{1}{x^2} + \frac{1}{xy} + \frac{\log x - \log y}{x^2 + y^2}
$$
, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + 2u = 0$.
\n30ⁿ: $u = \frac{1}{x}$ $(m, y) = \frac{1}{x^2} + \frac{1}{xy} + \frac{\log x - \log y}{\log x + y^2}$
\n $\int (m + y + z) dx = \frac{1}{x^2 + y^2} + \frac{1}{x^3 + z^4} + \frac{\log x}{(x + z)^2 + y^3}$
\n $= \frac{1}{x^2 + z^2} + \frac{1}{x^3 + z^4} + \frac{\log x - \log y}{(x + z)^2 + y^2}$
\n $= \frac{1}{x^2 + z^2} + \frac{1}{x^3 + z^4} + \frac{\log x - \log y}{(x + z)^2}$
\n $\int (m + y + z) dx = \frac{1}{x^2} \int \frac{1}{x^2} + \frac{1}{x^3} + \frac{\log x - \log y}{x^2 + y^2}$
\n $\int (m + y + z) dx = \frac{1}{x^2} \int (m, y)$
\n $\therefore \log x = \frac{1}{x} \int (m, y)$
\n $\therefore \log y = \frac{1}{x} \int (m, y) dx$
\n $\frac{3u}{2m} + y \frac{3u}{2y} = hu = -2u$
\n $\frac{3u}{2m} + y \frac{3u}{2y} = hu = -2u$
\nHence, $\frac{3u}{2m} + y \frac{3u}{2y} = hu = -2u$

3. If
$$
u = \frac{\sqrt{xy}}{\sqrt{x} + \sqrt{y}}
$$
, find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.
\n
$$
S_{0.1}h : U = f(m, y) = \frac{\sqrt{xy}}{\sqrt{y} + \sqrt{y}}
$$
\n
$$
f(m + y) = \frac{\sqrt{xy} + \sqrt{y}}{\sqrt{y} + \sqrt{y}} = \frac{\sqrt{xy}}{\sqrt{y} + \sqrt{y}}
$$
\n
$$
\therefore f(m + y) = \frac{\sqrt{y} + \sqrt{y}}{\sqrt{y} + \sqrt{y}} = \frac{\sqrt{y} + \sqrt{y}}{\sqrt{y} + \sqrt{y}} = \frac{\sqrt{y} + \sqrt{y}}{\sqrt{y} + \sqrt{y}}
$$

$$
\therefore f(mt, yt) = t^{'2} f(m,y)
$$
\n
$$
\therefore w \text{ is } homogge\text{ neurons function with } deg\text{ } n = \frac{1}{2}
$$
\n
$$
\therefore w \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = n u = \frac{1}{2} u = \frac{1}{2} \frac{\sqrt{m y}}{\sqrt{m + 1 y}}
$$
\n
$$
\therefore w \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = n u = \frac{1}{2} u = \frac{1}{2} \frac{\sqrt{m y}}{\sqrt{m + 1 y}}
$$
\n
$$
\therefore g(x) = \frac{1}{2} \frac{\sqrt{m y}}{\sqrt{m + 1 y}}
$$
\n
$$
\therefore g(x) = \frac{1}{2} \frac{\sqrt{m y}}{\sqrt{m + 1 y}}
$$
\n
$$
\therefore g(x) = \frac{1}{2} \frac{\sqrt{m y}}{\sqrt{m + 1 y}}
$$
\n
$$
\therefore g(x) = \frac{1}{2} \frac{\sqrt{m y}}{\sqrt{m + 1 y}}
$$
\n
$$
\therefore g(x) = \frac{1}{2} \frac{\sqrt{m y}}{\sqrt{m + 1 y}}
$$
\n
$$
\therefore g(x) = \frac{1}{2} \frac{\sqrt{m y}}{\sqrt{m + 1 y}}
$$
\n
$$
\therefore g(x) = \frac{1}{2} \frac{\sqrt{m y}}{\sqrt{m + 1 y}}
$$
\n
$$
\therefore g(x) = \frac{1}{2} \frac{\sqrt{m y}}{\sqrt{m + 1 y}}
$$
\n
$$
\therefore g(x) = \frac{1}{2} \frac{\sqrt{m y}}{\sqrt{m + 1 y}}
$$
\n
$$
\therefore g(x) = \frac{1}{2} \frac{\sqrt{m y}}{\sqrt{m + 1 y}}
$$
\n
$$
\therefore g(x) = \frac{1}{2} \frac{\sqrt{m y}}{\sqrt{m + 1 y}}
$$
\n
$$
\therefore g(x) = \frac{1}{2} \frac{\sqrt{m y}}{\sqrt{m + 1 y}}
$$
\n
$$
\therefore g(x) = \frac{1}{2} \frac{\sqrt{m y}}{\sqrt{m + 1 y}}
$$
\n
$$
\therefore g(x) = \frac{1}{2} \frac{\sqrt{m y}}{\sqrt{m + 1 y}}
$$
\n
$$
\therefore
$$

$$
u = \alpha m^{2} + 2hmy + by^{2}
$$

\n $\frac{\partial u}{\partial n} = 2an + 2hy = 3 \times \frac{\partial u}{\partial n} = 2hmy + 2by^{2}$
\n $\frac{\partial u}{\partial y} = 2hm + 2by = 3 \times \frac{\partial u}{\partial y} = 2hmy + 2by^{2}$
\n $\therefore M \frac{\partial u}{\partial n} + y \frac{\partial u}{\partial y} = 2am^{2} + 2hmy + 2hmy + 2by^{2}$
\n $\therefore M \frac{\partial u}{\partial n} + y \frac{\partial u}{\partial y} = 2(m^{2} + 2hmy + bby^{2}) = 2U$
\n $\therefore Euler's$

(ii) Verify Euler's Theorem for $u = \frac{x}{\sqrt{2}}$ $\frac{x+y}{\sqrt{x}+\sqrt{y}}$

we can show that
$$
u
$$
 is homogeneous function with
\ndeg $n = \frac{1}{2}$
\nHence to verify Euler's theorem, we show that
\n $w \ge 0$ and $u \ge \frac{3u}{2} = \frac{1}{2}u$

Henre to vering come. $\label{eq:2.1} \frac{1}{2} \int_{\mathbb{R}^3} \left| \frac{d\mu}{d\mu} \right| \, d\mu = \$

$$
3\frac{3u}{2} + 9\frac{3u}{2} + 2\frac{3u}{2} = \frac{1}{2}u
$$

Now
$$
U = \frac{m+1+2}{\sqrt{n}+\sqrt{1}+\sqrt{2}}
$$

$$
\therefore \frac{\partial U}{\partial n} = \frac{(\sqrt{n}+\sqrt{1}+\sqrt{1}z)\cdot(1) - (\sqrt{1}+\sqrt{1}+z)\cdot\frac{1}{2\sqrt{n}}}{(\sqrt{n}+\sqrt{1}+\sqrt{1}z)^2}
$$

$$
= \frac{2\int \pi (\sqrt{1}m+\sqrt{3}+\sqrt{2}) - (\sqrt{1}+\sqrt{3}+\sqrt{2})}{2\int \pi (\sqrt{1}m+\sqrt{3}+\sqrt{2})^2}
$$

$$
m \frac{\partial u}{\partial m} = \frac{2 \times (5n + 5y + 5z) - 5n (4n + y + z)}{2(5n + 5y + 5z)^{2}}
$$
 (1)

Similarly
\n
$$
y \frac{dy}{dy} = \frac{2y(\sqrt{x} + \sqrt{y} + \sqrt{z}) - \sqrt{y}(\sqrt{x} + \sqrt{y} + \sqrt{z})}{2(\sqrt{x} + \sqrt{y} + \sqrt{z})^2}
$$

\n $z \frac{du}{dz} = \frac{2z(\sqrt{x} + \sqrt{y} + \sqrt{z}) - \sqrt{z}(\sqrt{x} + \sqrt{y} + \sqrt{z})}{2(\sqrt{x} + \sqrt{y} + \sqrt{z})^2}$
\n $\Rightarrow \frac{du}{dy} + y \frac{du}{dy} + z \frac{du}{dz} = \frac{2(\sqrt{x} + \sqrt{y} + \sqrt{z}) - (\sqrt{x} + \sqrt{y} + \sqrt{z}) - (\sqrt{x} + \sqrt{y} + \sqrt{z})}{2(\sqrt{x} + \sqrt{y} + \sqrt{z})^2}$

$$
= \frac{2(5n+5y+5z)}{2(5n+5y+5z)}
$$

 $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = \frac{1}{2}u$ Henre Futer's theorem is venties.

1/28/2022 2:15 PM

(iii) Verify Euler's Theorem for $u = x^4y^2 sin^{-1}\left(\frac{y}{x}\right)$ $\frac{y}{x}$

Soin:
$$
u = \frac{1}{3} \frac{1}{3} \frac{3}{3} \sin^{-1}(\frac{9}{3})
$$
 is homogeneous function
\n $u = \frac{1}{3} \sin^{-1}(\frac{9}{3})$ is homogeneous function
\n $u = \frac{1}{3} \sin^{-1}(\frac{9}{3})$
\n $u = \frac{3u}{3} - \frac{1}{3} \sin^{-1}(\frac{9}{3})$
\n $\therefore \frac{3u}{3} = -\frac{1}{3} \frac{2u}{2} \left[2 \frac{1}{3} \sin^{-1}(\frac{9}{3}) + \frac{1}{3} \frac{1}{3$

a $x^3y^3z^3$ **b** $(xy+yz+zx)$ **c b** \vdots **c** ∂u **d** ∂u **c** ∂u

6. If
$$
u = \frac{z^{2}y^{2}z^{2}}{z^{2}y^{2}z^{2}}
$$
 - log cos + log cos

MODULE-5 Page 6

$$
24 \frac{34}{90} + \frac{33}{90} = \frac{1}{1}(\frac{1}{1})^{2} = \frac{1}{1}
$$

14 $\pi = \frac{10}{90} = \pm(\pi)$
 $\pi \frac{34}{90} + \frac{1}{90} = \frac{1}{1}(\pi) = \frac{1}{1}$
 $\pi \frac{34}{90} + \frac{33}{90} = \frac{1}{1}(\pi) = \frac{1}{1}(\pi)$
15 $\frac{34}{90} + \frac{33}{90} = \frac{1}{1}(\pi) = \frac{1}{1}(\pi)$
 $\frac{34}{90} + \frac{34}{90} = \frac{1}{1}(\pi) = \frac{34$