MAXIMA AND MINIMA Friday, January 14, 2022 1:47 PM

one raniable fur chion y=f(n) WORKING RULE TO FIND EXTREMUM VALUES: $z = f(\pi, y)$ $\mathbb{Q}^{(u)=0}$ soluting we get volues o'r v Critical pairs These points are called the critical Stationary points or the stationary points let n=0, b one critical $(2)_{\chi} = \frac{\partial f}{\partial m^2}, t = \frac{\partial^2 f}{\partial y^2}, S = \frac{\partial^2 f}{\partial m^2 y}$ Port D find f"(m) find f"(m) 1 at critical puints find r, t, s at every critical point. Mecessary condition : ~t-s2>0 vt-s² <0 then ignore that Tf critical point (neither max ner min $\int \frac{1}{\sqrt{t-s^2}} = 0 \quad \text{and} \quad \sqrt{(\alpha t)} > 0$ J" (0) 70 → mining J" (b) < 0 → maxing Then it is point of minima If xt-s2 >0 and x(ort) <0 then it is point of maxima.

SOME SOLVED EXAMPLES:

1. Discuss the maxima and minima of the function $x^2 + y^2 + 6x + 12$

$$\frac{SOIN}{SOIN} = \frac{f(\pi, y)}{2\pi} = \frac{m^2 + y^2 + 6m + 12}{2m}$$

$$\frac{SAPP-I}{2m} = \frac{2m}{2m} + 6 \qquad \begin{cases} \frac{\partial f}{\partial m} = 0 \\ \frac{\partial f}{2m} = 0 \end{cases} = \frac{2m + 6}{2m} = 0 \\ \frac{\partial f}{2m} = 0 \end{cases}$$

$$\frac{\partial f}{\partial y} = \frac{2y}{2m} \qquad \begin{cases} \frac{\partial f}{\partial m} = 0 \\ \frac{\partial f}{2m} = 0 \end{cases} = \frac{2y}{2m} = 0 \\ \frac{\partial f}{2m} = 0 \end{cases}$$

$$= y = 0.$$

$$\frac{(-3,0)}{5} + \frac{3^2 f}{3m^2} = 2 \qquad S = \frac{3^2 f}{3m^3 y} = 0 \quad f = \frac{3^2 f}{3y^2} = 2$$

222

$$\frac{S769-\overline{M}}{(-3,0)} = x = 2, s = 0, t = 2$$

$$\frac{(-3,0)}{(-3,0)} = x = 2, s = 0, t = 2$$

$$\frac{(-3,0)}{(-3,0)} = x = 2, s = 0, t = 2$$

Hence
$$f(m,y)$$
 is minimum at $(-3,0)$
 $f_{min} = f(-3,0) = (-3)^2 + (0)^2 + 6(-3) + 12$
 $= 9 - 18 + 12 = 3$

1/17/2022 1:15 PM

2. Find the extreme values of the function $x^3 + 3xy^2 - 3x^2 - 3y^2 + 7$, if any. Sol^h: $f(m, y) = m^3 + 3\pi y^2 - 3\pi^2 - 3y^2 + 7$. $\frac{34ep-1}{2m} := Ferry extreme values, \frac{3f}{2m} = 0 \quad 4 \quad \frac{3f}{2y} = 0$ $\frac{3f}{2m} = 0 \quad =) \quad 3\pi^2 + 3y^2 - 6\pi = 0 \quad =) \quad \pi^{2} + y^2 - 2\pi = 0 \quad - (1)$ $\frac{3f}{3y} = 0 \quad =) \quad \frac{6\pi y - 6y}{2m} = 0 \quad =) \quad \pi y - y = 0 \quad =)(m-1)y = 0$ $=) \quad \pi - 1 = 0 \quad \text{ov} \quad y = 0$

Using m = 1 in e_{q}^{n} (1) $(+y^{2} - 2 = 0 =) y^{2} = 1 =) y = \pm 1$

: Stationary points are (1,1) and (1,-1)

Using
$$y=0$$
 in each a
 $n^2 - 2m = 0$ =) $m(m-2) = 0$ =) $m=0$ or $m=2$
.: stationary points are (0,0) and (2,0)

Step-i:
$$Y = \frac{3^2 f}{3m^2} = 6m - 6$$

 $S = \frac{3^2 f}{3m^2} = 6y$ and $t = \frac{3^2 f}{3y^2} = 6m - 6$

	(m, y)	~	S	t	xt-s ²	sign of r	(onclusion
	(0,0)	-6	0	-6	3670	x=-6<0	Maximum
ŀ	12.1	C	A	r	2170	x=670	Minimum /

	(0,0)	-1	ΤΛ	1-6	1 3670	X=-650	17 annum
			\vdash			1-120	Minimum
	(2,0)	6	6	6	3670	4-070	
ľ	(', ')	0	6	0	-36<0		heither maxner minimum
	('-')	0	, - 6	0	-36<0	_	hermin.

Hence
$$f(m, y)$$
 is maximum at $(0, 0)$ and minimum at $(2, 0)$
 $f(m, y) = m^{3} + 3my^{2} - 3m^{2} - 3y^{2} + 7$
 $f(max = f(0, 0) = 7$
 $f(min = f(2, 0) = (2)^{3} - 3(2)^{2} + 7 = 8 - 12 + 7 = 3$

3. Find the extreme value of
$$xy(a-x-y)$$

 $90^{N} - f(m, y) = my(a-m-y) = amy - m^2y - my^2$
 $\underline{Step-f} = For extreme values, $\frac{sf}{3m} = 0$ $\frac{sf}{3y} = 0$
 $\frac{sf}{3m} = 0 = 3$ $ay - 2my - y^2 = 0$
 $y(a - 2m - y) = 0 = 3$ $y = 0$ or $a - 2m - y = 0$
 $\frac{sf}{3y} = 0 = 3$ $on - m^2 - 2my = 0$
 $m(a - m - 2y) = 0 = 3$ $m = 0$ or $a - m - 2y = 0$
 $\frac{2}{3}$$

1st ean	2nd ean	baint. Sfagerand
Y=0	n = 0	(0, 0)
y=_0	Q-7-2y=0	(0,0)
a-271-y=0	ગ = ૦	(0,0)
Q-2M-Y=0 2m +y=a	a-27=0	$\left(\frac{a}{3},\frac{a}{3}\right)$
		0

Step-II:
$$Y = \frac{\partial^2 f}{\partial \pi^2} = -2y$$
 $S = \frac{\partial^2 f}{\partial \pi^2} = \alpha - 2m - 2y$

$$t = \frac{\partial f}{\partial y^2} = -2\pi$$

$$\frac{Step-11}{(m, u)} \xrightarrow{\times} S \xrightarrow{} t \xrightarrow{\times} xt-S^2 \xrightarrow{\text{sign of conclusion}} V$$

(n, y)	8	S	16	$ - (f - s_5)$	sign of	conclusion
(010)	0	a	0	$-a^{2} < 0$	_	Neither max ner min
(0,0)	0	-a	-za	$-a^{2} < 0$		Neither maxner min
(0,a)	-2a	a	0	-a ² <0	_	Meither max nor win
$\left(\frac{a}{3},\frac{a}{3}\right)$	- <u>2a</u> 3	$-\frac{\alpha}{3}$	- <u>2a</u> 3	$\frac{\sigma^2}{3}$ > 0	$Y = -\frac{2\alpha}{3}$	Max or Min

Hence f(m, y) is maximum or minimum or $\left(\frac{a}{3}, \frac{a}{3}\right)$ depending on whether a > 0 or a < 0 $f(m, y) = my(a^{-m} - y)$ $f(m, y) = my(a^{-m} - y)$

4. Examine the function
$$x^{3}y^{2}(12-3x-4y)$$
 for extreme values.
Sol^m: $f(m, y) = m^{3}y^{2}(12-3m-4y) = 12m^{3}y^{2} - 3m^{4}y^{2} - 4m^{5}y^{3}$
 $\frac{2f}{2m} = 36m^{2}y^{2} - 12m^{3}y^{2} - 12m^{2}y^{3}$
 $\frac{2f}{2m} = 24m^{3}y - 6m^{5}y - 12m^{3}y^{2}$
 $y^{2} = 24m^{3}y - 6m^{5}y - 12m^{3}y^{2}$
 $y^{2} = 24m^{3}y - 6m^{5}y - 12m^{3}y^{2} = 0$
 $= 3m^{2}y^{2}(3-m-y) = 0$
 $= m^{2}y^{2}(3-m-y) = 0$
 $y = 0 \text{ and } y = 0 \text{ and } 3-m-y=0$
 $= m^{2}y^{2}(3-m-y) = 0$
 $= m^{2}y^{2}(3-m-y) - 2m^{3}y^{2} = 0$
 $= m^{3}y(4-m-2y) = 0$
 $= m^{3}y(6-m^{3}y) = 0$
 $= m^{3$

.: we get six stationary points as above.

Step-II

$$Y = \frac{3^{2}t}{3n^{2}} = \frac{12ny^{2} - 36n^{2}y^{2} - 24ny^{3}}{3n^{2}y^{2}}$$

$$S = \frac{3^{2}t}{3n^{3}y} = \frac{12n^{2}y - 24n^{3}y - 36n^{2}y^{2}}{3n^{3}y}$$

$$t = \frac{3^{2}t}{3y^{2}} = \frac{12n^{3} - 6n^{4} - 24n^{3}y}{3y^{2}}$$

(m,~)	~) \$) t	~t-s	2 Sign or	1 conclusion
(010)	0	0	0	0	-	NU cohelusion
(0,2)	0	0	0	0	-	11
(4,0)	0	0	0	0	-	1.1
([•] 0 , 3)	0	0	0	0	-	11
(3,0).	0	0	162	0		
(2,1)	-48	- 48	-96	230470	~<0 /	Maximum

ζ.

Hence f(m, y) is maximum at (2,1)

1/19/2022 2:15 PM 5. Find the extreme values of $\sin x + \sin y + \sin(x + y)$

$$\frac{\partial f'}{\partial t} = f(m, y) = \sin m + \sin y + \sin (m + y)$$

$$\frac{\partial f}{\partial m} = 0, \quad \frac{\partial f}{\partial y} = 0.$$

$$\frac{\partial f}{\partial m} = (\cos m + \cos (m + y)) \quad \text{and} \quad \frac{\partial f}{\partial y} = (\cos y + \cos (m + y))$$

$$\frac{\partial f}{\partial m} = 0 \quad =) \quad (\cos m + \cos (m + y)) = 0 \quad (1)$$

$$\frac{\partial f}{\partial y} = 0 \quad =) \quad (\cos y + \cos (m + y)) = 0 \quad (2)$$

$$\frac{\partial f}{\partial y} = 0 \quad =) \quad (\cos y + \cos (m + y)) = 0 \quad (2)$$

$$\frac{\partial f}{\partial y} = 0 \quad =) \quad (\cos y + \cos (m + y)) = 0$$

$$(05n + [05(m+y)] = (05y + (05(m+y))$$

$$=) (05n = (05y)$$

$$=) (n = y)$$

$$(05n + (052n = 0)$$

$$(05n + (052n) = 0$$

$$(05n = -(052n)$$

$$= (05(T + 2n)) \text{ or } (05(T - 2n))$$

$$=) n = T + 2n \text{ or } n = T - 2n$$

$$=) n = -T + 2n \text{ or } n = T - 2n$$

$$=) n = -T + 2n \text{ or } n = T - 2n$$

$$=) n = -T + 2n \text{ or } n = T - 2n$$

$$=) n = -T + 2n \text{ or } n = T - 2n$$

$$=) n = -T + 2n \text{ or } n = T - 2n$$

$$=) n = -T + 2n \text{ or } n = T - 2n$$

$$=) n = -T + 2n \text{ or } n = T - 2n$$

$$=) n = -T + 2n \text{ or } n = T - 2n$$

$$=) n = -T + 2n \text{ or } n = T - 2n$$

$$=) n = -T + 2n \text{ or } n = T - 2n$$

$$=) n = -T + 2n \text{ or } n = T - 2n$$

$$=) n = -T + 2n \text{ or } n = T - 2n$$

$$=) n = -T + 2n \text{ or } n = T - 2n$$

$$=) n = -T + 2n \text{ or } n = T - 2n$$

$$=) n = -T + 2n \text{ or } n = T - 2n$$

$$=) n = -T + 2n \text{ or } n = T - 2n$$

$$=) n = -T + 2n \text{ or } n = T - 2n$$

$$=) n = -T + 2n \text{ or } n = T - 2n$$

$$=) n = -T + 2n \text{ or } n = T - 2n$$

$$=) n = -T + 2n \text{ or } n = T - 2n$$

$$=) n = -T + 2n \text{ or } n = T - 2n$$

$$=) n = -T + 2n \text{ or } n = T - 2n$$

$$=) n = 0 \text{ or } n = T - 2n$$

$$=) n = 0 \text{ or } n = T - 2n$$

$$=) n = 0 \text{ or } n = T - 2n$$

$$=) n = 0 \text{ or } n = T - 2n$$

$$=) n = 0 \text{ or } n = T - 2n$$

$$=) n = 0 \text{ or } n = T - 2n$$

$$=) n = 0 \text{ or } n = T - 2n$$

$$=) n = 0 \text{ or } n = T - 2n$$

$$=) n = 0 \text{ or } n = T - 2n$$

$$=) n = 0 \text{ or } n = T - 2n$$

$$=) n = 0 \text{ or } n = T - 2n$$

$$=) n = 0 \text{ or } n = T - 2n$$

$$=) n = 0 \text{ or } n = T - 2n$$

$$=) n = 0 \text{ or } n = T - 2n$$

$$=) n = 0 \text{ or } n = T - 2n$$

$$=) n = 0 \text{ or } n = T - 2n$$

$$=) n = 0 \text{ or } n = T - 2n$$

$$=) n = 0 \text{ or } n = T - 2n$$

$$= -T - 2n$$

$$=) n = 0 \text{ or } n = T - 2n$$

$$= -T - 2n$$

$$= -$$

 $\begin{array}{c|c} \underline{S+Pp-3}:\\ (\mathcal{M},\mathcal{Y}) & Y & S & T & Yt-S^2 & sign of conclusion \\ (-\mathcal{T},\mathcal{T}) & O & O & O & Y \\ (-\mathcal{T},\mathcal{T}) & O & O & O & Y \\ (\mathcal{T}_3,\mathcal{T}_3) & -\mathcal{F}_3 & -\mathcal{F}_3 & -\mathcal{F}_3 & \mathcal{P}_3 & \mathcal{P}_$

$$(I_3, y) = \text{sinm} + \text{siny} + \text{sin}(m+y) \text{is manimum of}$$

 (I_3, I_3) and $\text{fmom} = \text{sin} I_3 + \text{sin} (21) = \frac{3}{2}$

6. Find the extreme values of $\sin x \sin y \sin(x + y)$

$$\frac{S_{0}m}{S_{1}}: f(m,y) = sinn siny sin (m+y)$$

$$\frac{S_{1}ep-J}{S_{1}}:= \frac{2f}{3n} = siny \int sinn(\cos(n+y)+(\sigma sn sin(m+y))$$

$$= siny sin(2m+y)$$

$$\frac{2f}{3y} = sinn \int siny (\sigma s(m+y) + (\sigma sy sin(m+y))$$

$$= \operatorname{Sind} \operatorname{Sin}(m+2y)$$

$$\frac{24}{3m} = 0 \implies \operatorname{Siny} \sin(2n+y) = 0$$

$$= \operatorname{Siny} = 0 \qquad \operatorname{Sin}(2n+y) = 0$$

$$= \operatorname{Siny} = 0 \qquad \operatorname{Sin}(2n+y) = 0$$

$$= \operatorname{Sinm} = 0 \qquad \operatorname{Sin}(m+2y) = 0$$

$$= \operatorname{Sinm}(2n+2y)$$

$$\begin{array}{c|c} (m,y) & Y & S & E & Yt-S^{2} & \text{Sign of} & (\text{onclusion} \\ (0,0) & 0 & 0 & 0 & 0 \\ (0,T) & 0 & 0 & 0 & 0 \\ (T,0) & 0 & 0 & 0 & 0 \\ (T,T) &$$

and from
$$= \left(\frac{13}{2}\right) \left(\frac{13}{2}\right) \left(\frac{13}{2}\right) = \frac{3}{2}\frac{13}{8}$$

2. Divide 120 into there parts to that the sum of their products taken two at a time shall be maximum.
Som: (et m, y_1 Z be the power's of 120
 $\therefore m + y + Z = 120 \Rightarrow Z = 120 - m - y$
 $f = My + y_2 + Z\pi$
 $= My + y_2 (120 - m - y) + (120 - m - y)\pi$
 $f(m_1 y) = My + 120y - My - y^2 + 120m - m^2 - My$
 $f(m_1 y) = 120 (m + y) - m^2 - y^2 - my$
 $\frac{34}{5m} = 0 \Rightarrow 120 - 2m - y$
 $\frac{34}{5m} = 0 \Rightarrow 120 - 2m - y = 0 \Rightarrow 2m + y = 120 - 1$
 $\frac{34}{5m} = 0 \Rightarrow 120 - 2m - y = 0 \Rightarrow m + 2y = 120 - 1$
 $\frac{34}{5m} = 0 \Rightarrow 120 - 2m - y = 0 \Rightarrow m + 2y = 120 - 1$
 $\frac{34}{5m} = 0 \Rightarrow 120 - 2m - y = 0 \Rightarrow m + 2y = 120 - 1$
Solive (i) & (ii), we get
 $\pi = 40, y = 40$
 $\therefore 3370 + 50 + 50 = 2, s = \frac{34}{5m^2} = -1, t = \frac{324}{3y^2} = 2$
 $\frac{34 + p - 3}{5m} = 120 - 80 = 40$
 $\therefore (100, 100) + 15 = 4he point is maxima.$
 $Z = 120 - m - y = 120 - 80 = 40$
 $\therefore (120 - 8how at be divided as to, ho, ho, to zo get
 $120 - 8how at be divided as the function.$$

Find the points on the surface $z^2 = xy + 1$ nearest to the origin. Also find that distance 0

8. In the points on the satisfies
$$2^{n} = y^{n}$$
 the array point on the surface

$$z^{2} = ny \pm 1$$
It's distance from the origin is

$$d = \sqrt{n^{2} \pm y^{2} \pm z^{2}} \implies d^{2} = n^{2} \pm y^{2} \pm z^{2}$$

$$= n^{2} \pm z^{2} \pm z^{2} \pm z^{2}$$

$$= n^{2} \pm z^{2} \pm z^{2} \pm z^{2}$$

$$= n^{2} \pm z^$$

- I

$$V = nyz = 108$$

also $S = ny+2yz+2zn$

$$= ny + 2y \left(\frac{108}{ny}\right) + 2\left(\frac{108}{ny}\right)n$$

 $f(n,y) = ny + 216\left(\frac{1}{n} + \frac{1}{y}\right)$

Step 1: $\frac{xt}{2m} = y - \frac{216}{312}$, $\frac{3t}{3y} = n - \frac{216}{y2}$

 $\frac{3t}{3m} = 0 = y - \frac{216}{312} = 0$

 $\frac{3t}{3y} = 0 = n - \frac{216}{312} = 0$

() = $y = \frac{216}{312}$

Sub in (2) $n - \frac{216}{312} = 0$

 $n - \frac{m^{1}}{216} = 0$

 $y = 216$

 $n - \frac{m^{1}}{216} = 0$

 $n - \frac{m^{1}}{216} = 0$

 $y = 216$

 $m + y = 216$

 $n - \frac{m^{1}}{216} = 0$

 $y = 216$

 $m + y = 216$

$$(6,6) \text{ is the stationary point}$$

$$S \pm ep - 2 : r = \frac{5^{2}t}{3^{2}t} = \frac{432}{3^{3}}, S = \frac{3^{2}t}{3^{3}y} = 1, t = \frac{432}{3^{3}}$$

at $(6,6), r = 2, S = 1, t = 2$

$$\therefore rt - s^{2} = 3 > 0 \text{ and } r > 0$$

$$\therefore f(m,y) \text{ is minimum at } (6,6)$$

$$\therefore Z = \frac{108}{34} = \frac{108}{36} = 3$$

.: Z =
$$\frac{108}{ny} = \frac{108}{36} = 3$$

.: The dimension of the hox should be
 $6m$, $6m$, $3m$ to get min surface area.
Min surface area = nytzyztzzn = 36+36+36
= 108 sq.m.

10. Show that the rectangular solid of maximum volume that can be inscribed in a given sphere is a cube.

Solution: Let *x*, *y*, *z* be the length, breadth and height of the rectangular solid and V be its volume. V = x y z

$$V = x y z \qquad(1)$$
Let the given sphere be $x^2 + y^2 + z^2 = a^2$, $z^2 = a^2 - x^2 - y^2$
Substituting in Eq (1) $V = xy\sqrt{a^2 - x^2 - y^2}$
 $V^2 = x^2y^2(a^2 - x^2 - y^2)$
Let $f(x,y) = V^2 = x^2y^2(a^2 - x^2 - y^2)$ (2)
Step I: For extreme values, $\frac{\partial f}{\partial x} = 0$
 $y^2[2x(a^2 - x^2 - y^2) + x^2(-2x)] = 0$
 $2xy^2(a^2 - 2x^2 - y^2) = 0$
 $x = 0, y = 0, 2x^2 + y^2 = a^2$ (3)
 $\frac{\partial f}{\partial y} = 0$
 $x^2[2y(a^2 - x^2 - y^2) + y^2(-2y)] = 0$
 $2x^2y(a^2 - x^2 - 2y^2) = 0$
 $x = 0, y = 0, x^2 + 2y^2 = a^2$ (4)
But x and y are the sides of the rectangular solid, and therefore, cannot be zero. Solving
 $2x^2 + y^2 = a^2$ and $x^2 + 2y^2 = a^2$
 $x^2 = \frac{a^2}{3}, y^2 = \frac{a^2}{3}, x = \frac{a}{\sqrt{3}}, y = \frac{a}{\sqrt{3}}$ [: side cannot be negative]
 $z = \sqrt{a^2 - \frac{a^2}{3}} - \frac{a^2}{3}} = \frac{x}{\sqrt{3}}$ Stationary points are $\left(\frac{a}{\sqrt{3}}, \frac{a}{\sqrt{3}}, \frac{a}{\sqrt{3}}\right)$
Step II:
 $= \frac{\partial^2 f}{\partial x^2} = 2a^2y^2 - 12x^2y^2 - 2y^4$
 $s = \frac{\partial^2 f}{\partial x^2} = 2a^2x^2 - 2x^4 - 12x^2y^2$
Step III: At $\left(\frac{a}{\sqrt{3}, \sqrt{3}}\right), r = \frac{2a^4}{3} - \frac{2a^4}{9} = -\frac{8a^4}{9}$
 $s = \frac{4a^4}{3} - \frac{8a^4}{9} - \frac{8a^4}{9} = -\frac{4a^4}{9}$
 $r - s^2 = \frac{4a^4}{81} - \frac{16a^8}{9} = -\frac{4a^4}{9}$
 $r - s^2 = \frac{4a^4}{81} - \frac{16a^8}{9} = \frac{48a^6}{81} = 0; rt - s^2 > 0$ and $r < 0$

r

f(x, y) i.e, V^2 is maximum at x = y = z and hence, V is maximum when x = y = z, i.e the rectangular solid is a cube