Properties of Eigen Values and Eigen Vectors

Monday, December 27, 2021 1:33 PM

Theorem 1: Prove that zero is an eigenvalues of a matrix A if and only if A is singular. **Theorem 2:** Prove that the matrix A and its transpose A^T has same characteristic roots. **Theorem 3:** Prove that the eigenvalues of a diagonal matrix are precisely the diagonal elements. **Theorem 4:** Prove that the eigenvalues of a triangular matrix are precisely the diagonal elements. **Theorem 5:** λ is an Eigen value of the matrix A if and only if there exists a non – zero vector X such that $AX = \chi$. **Theorem 6:** If X is an Eigen vector of a matrix A corresponding to an Eigen value λ then kX(k is a non – zero scalar) is also an Eigen vector of A corresponding to the same Eigen value λ . Theorem 7: (Uniqueness of Eigen Value): If X is an Eigen vector of a matrix A then X cannot correspond to more than one Eigen values of A. Theorem 8: (Linear independence of Eigen Vectors): Eigen vectors corresponding to distinct Eigen values of a matrix are linearly independent. **Theorem 9:** Eigen values of a Hermitian matrix are real. **Corollary 1**: The determinant of a Hermitian matrix is real. **Corollary 2:** Eigen values of a real symmetric matrix are all real. **Corollary 3:** Eigen values of a Skew – Hermitian matrix are either purely imaginary or zero. **Corollary 4:** The Eigen values of a real skew – symmetric matrix are purely imaginary or zero. Theorem 10: The Eigen values of unitary matrix are of unit modulus. (have absolute value one). **Corollary:** Eigen values of an orthogonal matrix are of unit modulus. **Theorem 11:** The Eigen vectors corresponding to distinct Eigen values of a real symmetric matrix are 4.72 = 0.orthogonal. Theorem 12: Any two Eigen vectors corresponding to two distinct Eigen values of a unitary matrix are orthogonal. Note: **1.** If one Eigen value of a matrix A is a + ib then another eigen value must be a - ib. **2.** If λ is an Eigen value of A then $\overline{\lambda}$ is an eigen value of A^{θ} 4. If $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigen values of A then show that $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}$ are the Eigen values of A^{-1} 5. If $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigen values of A then show that $\lambda_1^2, \lambda_2^2, \dots, \lambda_n^2$ are the eigen values of A^2 . 6. If λ is an Eigen value of a non – singular matrix A, prove that $\frac{|A|}{\lambda}$ is an eigen value of adj A. 7. If λ is an Eigen value of the matrix A then $\lambda \pm k$ is an eigen value of $A + \nu I$ 3. If $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigen values of A then show that $k\lambda_1, k\lambda_2, \dots, k\lambda_n$ are the Eigen value kA. 7. If λ is an Eigen value of the matrix A then $\lambda \pm k$ is an eigen value of $A \pm kI$ If f(x) is an algebraic polynomial in x and λ is an Eigen value and X is the corresponding Eigen vector of a square matrix A then f() is an eigen value and X is the corresponding eigen vector of f(A). A>18,27 **Solved Examples 1.** If $A = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$ Where a, b, c are positive integers, then prove that

(i) a + b+ c is an Eigen value of A and (ii) if A is non – singular, one of the Eigen values is negative.

AS A is non singular, X2, 23 are not zero. => either of N2, or 23 must be negative.

$$\therefore a + b + L - \gamma = 0 \implies \lambda = a + b + C$$

i one of the eigen values is a + b + C
if $\lambda_1, \lambda_2, \lambda_3$ over the eigen values of A + hen
 $\lambda + \lambda + \lambda + 3 = + c + c = of A = a + b + C$.
but one of the eigen values = $a + b + C$.
Say $\lambda = -a + b + C$

$$\begin{array}{c|c} (a + b + (-n)) & | & b & c \\ | & (-n) & a & | = 0 \\ | & (-n) & a & | = 0 \\ | & a & b - n & | = 0 \\ | & a & b - n & | = 0 \end{array}$$

$$\begin{vmatrix} a-7 & b & c \\ b & c-7 & a \\ c & a & b-7 \end{vmatrix} = 0$$

By $c_1 + (2+c_3)$
$$\begin{vmatrix} a+b+c-7 & b & c \\ a+b+c-7 & c-7 & a \\ a+b+c-7 & a & b-7 \end{vmatrix} = 0$$

The churactenshi equor 17 1-

2. If $\lambda_1, \lambda_2, \lambda_3$ are the eigen values of a 3×3 matrix then prove that the Eigen values of $ad_1 A$ are $\lambda_1, \lambda_2, \lambda_2, \lambda_3$ and λ_3, λ_1 $\Rightarrow (A) = N + N^2 + N^3$ $\Rightarrow (A) + N^3$ $\Rightarrow (A)$

12/29/2021 2:23 PM

3. If A is a real square matrix of order n where n is an **odd** positive integer, then show that A has at least one real Eigen value.

4. The sum of the Eigen values of a 3×3 matrix is 6 and the product of the Eigen values is also 6. If one of the Eigen values is one, find the other two Eigen values.

Som: let
$$\lambda_1, \lambda_2, \lambda_3$$
 be the e-values
 $\lambda_1 + \lambda_2 + \lambda_2 = 6$
 $\lambda_1 + \lambda_2 + \lambda_3 = 5$
 $\lambda_2 + \lambda_3 = 5$
 $\lambda_2 + \lambda_3 = 6$
 $= \lambda_2 + \lambda_3 = 6$
 $\lambda_2 = (5 - \lambda_3)$
 $(5 - \lambda_3) + \lambda_3 = 6$
 $5 + \lambda_3 - \lambda_3^2 = 6$
 $= \lambda_3^2 - 5 + \lambda_3 + 6 = 6$
 $= \lambda_3 - \lambda_3^2 = 6$
 $= \lambda_3 - \lambda_3 = 3$
 $\lambda_3 - 5 + \lambda_3 + 5 + 3 - 1 = 0$
 $\lambda_3^3 - 6 + \lambda_2^2 + (5 - \lambda_3) = 6$
 $= \lambda_3 - 6 + 5 + 2 - 6 = 0$
 $= \lambda_3 - 6 + 5 + 2 - 6 = 0$
 $= \lambda_3 - 5 + 2 + 11 + 2 - 6 = 0$
 $= \lambda_3 - 5 + 2 + 11 + 2 - 6 = 0$
 $= \lambda_3 - 5 + 2 + 11 + 2 - 6 = 0$

5. If $A = \begin{bmatrix} \sin\theta & \csc\theta & 1\\ \sec\theta & \cos\theta & 1\\ \tan\theta & \cot\theta & 1 \end{bmatrix}$ then prove that there does not exist a real value of θ for which characteristic roots of A are -1, 1, 3

6. Find the characteristic roots of $A^{30} - 9A^{28}$ where $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$

Solb: ch, earl of A is
$$\left| \frac{1-3}{2} \right| = 0$$

 $(1-3)^2 - 4 = 0$
 $1-23+3^2 - 4 = 0$
 $1-23+3^2 - 4 = 0$
 $3^2 - 23 - 3 = 0$
 $(3-3)(3+1) = 0$
 $3 = -1, 3.$
 $\frac{1}{A} - \frac{1}{3}$
 $\frac{A^{28}}{4} = 1$
 $-\frac{1}{3}$
 $\frac{1}{4} + \frac{1}{3} + \frac{3^{28}}{4} = 3^{30}$
 $\frac{1}{4} + \frac{1}{3} + \frac{3^{28}}{4} = 3^{30}$
 $\frac{1}{4} + \frac{1}{3} + \frac{3^{28}}{4} = 3^{30}$
 $\frac{1}{4} + \frac{1}{3} + \frac{1}{3}$

$$= 9 = 3^{30} + 3^{3$$

7. Find the Eigen values of
$$A^2 - 2A + I$$
 if $A = \begin{bmatrix} 2 & 1 & -2 \\ 0 & 1 & 4 \\ 0 & 0 & 3 \end{bmatrix}$

Figen values of A are 1, 2, 3 (upper triangular

$$\lambda_1 = 1$$
, $\lambda_2 = 2$, $\lambda_3 = 3$
 $f(A) = A^2 - 2A + T$
Figen values of $f(A)$ or $e^{-f(\lambda_1)}$, $f(\lambda_2) & f(\lambda_3)$
 $\begin{cases}
-f(\lambda_1) = f(1) = (1)^2 - 2(1) + 1 = 1 - 2 + 1 = 0 \\
-f(\lambda_2) = -f(2) = (1)^2 - 2(2) + 1 = 1 \\
-f(\lambda_3) = -f(3) = (3)^2 - 2(3) + 1 = 4 \\
\end{cases}$
Find the Eigen values of $adjA$ if $A = \begin{bmatrix} 1 & 2 & 3 & -2 \\ 0 & 2 & 4 & 6 \\ 0 & 0 & 4 & -5 \\ 0 & 0 & 0 & 6 \end{bmatrix}$

8.

9. If A is a square matrix of order 2 with |A| = 1 then prove that A and A^{-1} have the same eigen values. Hence verify for $A = \begin{bmatrix} -1 & -1 \\ 2 & 1 \end{bmatrix}^{-1}$ Soin: - Eigen values of A and on a B Eigen values of A ave I and I $|A|=| = \rangle \quad \forall \beta = | = \rangle \quad \forall = \frac{1}{\beta} \quad \forall \beta = \frac{1}{\sqrt{\beta}}$ ANS0 ... Trigen nouves of A ove B & X : A & A have same eigen values. (A) = -1 +2 =) Now $A = \begin{pmatrix} -1 & -1 \\ 2 & 1 \end{pmatrix}$ $\begin{array}{c|c} Ch. eqn & 0-1 & |A & is \\ \hline 2 & |-\lambda| & = 0 \\ \hline 2 & |-\lambda| & = 0 \end{array}$ $(-1 - \lambda)(1 - \lambda) + 2 = 0$ -1+>-> +>2+2=0 $A = \begin{bmatrix} -1 & -1 \\ 2 & 1 \end{bmatrix}$ $\lambda^2 + 1 = 0 = \lambda = \pm 1$

 $A = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} +$

Now
$$\vec{A}' = \frac{\alpha A_{0}^{2} / A}{(A)} = \alpha A_{0}^{2} / A = \begin{bmatrix} 1 & -2 \\ 1 & -1 \end{bmatrix}$$

chiegen of \vec{A}' is $\begin{bmatrix} 1 - \lambda - 2 \\ 1 & -1 - \lambda \end{bmatrix} = 0$

10. Verify that X = [2,3,-2,-3]' is an eigen vector corresponding to the eigen value $\lambda = 2$ of the matrix. $A = \begin{bmatrix} 1 & -4 & -1 & -4 \\ 2 & 0 & 5 & -4 \\ -1 & 1 & -2 & 3 \\ -1 & 4 & -1 & 6 \end{bmatrix}$ Sol^m: To check theat $A \neq = \chi \chi$ $A = \chi = \chi$ $A = \begin{bmatrix} 1 & -4 & -1 & -4 \\ -4 & -1 & 6 \end{bmatrix}$ $A = \begin{bmatrix} 1 & -4 & -1 & -4 \\ -4 & -1 & 6 \end{bmatrix}$ $A = \begin{bmatrix} 1 & -4 & -1 & -4 \\ -4 & -1 & 6 \end{bmatrix}$ $A = \begin{bmatrix} 1 & -4 & -1 & -4 \\ -4 & -1 & 6 \end{bmatrix}$ $A = \begin{bmatrix} 1 & -4 & -1 & -4 \\ -4 & -1 & 6 \end{bmatrix}$ $A = \begin{bmatrix} 1 & -4 & -1 & -4 \\ -4 & -1 & 6 \end{bmatrix}$

$$\begin{bmatrix} -3 \\ -3 \end{bmatrix} \begin{bmatrix} -3 \\ -3 \end{bmatrix}$$

-

.: AX=2X = 7X .: X is the eigen vector for eigen value X=2 for matrix A.