DE MOIVRE'S THEOREM

Monday, October 11, 2021 2:00 PM

DE MOIVRE'S THEOREM:

Statement : For any rational number n the value or one of the values of $(\cos \theta + i \sin \theta)^n$

1. If $z = \cos \theta + i \sin \theta$ then $\mathbf{1}$ $\frac{1}{z} = z^{-1} = (\cos \theta + i \sin \theta)^{-1}$ i.e. $\frac{1}{z}$ **2.** $(\cos \theta - i \sin \theta)^n$ For, $(\cos \theta - i \sin \theta)^n = {\cos(-\theta) + i \sin(-\theta)}^n$ $= cos(-n\theta) + isin(-n\theta).$ $= \cos n \theta - i \sin n \theta$

$$
\begin{array}{l} (cos\varphi \pm i sin\varphi)^\eta \\ = cos\varphi \pm i sin\varphi \end{array}
$$

 \overline{V}

Note : Note carefully that ,

(1) $(\sin \theta + i \cos \theta)^n$ But $(\sin \theta + i \cos \theta)^n = [\cos \left(\frac{\pi}{2}\right)]$ $\left(\frac{\pi}{2} - \theta\right) + i \sin\left(\frac{\pi}{2}\right)$ $\frac{\pi}{2} - \theta$)]ⁿ π $\left(\frac{\pi}{2} - \theta\right) + i \sin n \left(\frac{\pi}{2}\right)$ $\frac{\pi}{2}$

(2) $(\cos \theta + i \sin \theta)^n$

SOME SOLVED EXAMPLES:

1. Simplify $\frac{(\cos 2\theta - i \sin 2\theta)^7(\cos 3\theta + i \sin 3\theta)^5}{(\cos 2\theta + i \sin 2\theta)^{12}(\cos 5\theta + i \sin 5\theta)^5}$ $\frac{\cos 2\theta - i \sin 2\theta}{(\cos 3\theta + i \sin 3\theta)^{12}(\cos 5\theta - i \sin 5\theta)^7}$

$$
cos2\theta - isin2\theta = (cos\theta + isin\theta)^{2} = e^{i2\theta}
$$

\n $cos3\theta + isin3\theta = (cos\theta + isin\theta)^{3} = e^{i3\theta}$
\n $cos5\theta - isin5\theta = (cos\theta + isin\theta)^{5} = e^{i5\theta}$
\n $sin2\theta = (cos\theta + isin\theta)^{5} = (e^{i3\theta})^{5}$
\n $(e^{i3\theta})^{12} (e^{i3\theta})^{5} = 0$
\n $= e^{i3\theta} \cdot \frac{e}{e^{i3\theta}} = e^{i\theta}$
\n $e^{i3\theta} e^{i3\theta} = e^{i\theta}$

$$
\ =\ \ \underline{\bot} \ .
$$

2.

Prove that
$$
\frac{(1+i)^8(\sqrt{3}-i)^4}{(1-i)^4(\sqrt{3}+i)^8} = -\frac{1}{4}
$$

MODULE-1 Page 1

$$
S_{01}^{(n)} = S_{2}(cos\frac{\pi}{4}+isin\frac{\pi}{4}) = S_{2}e^{-isin\frac{\pi}{4}} = \frac{1}{2}i\frac{1}{4
$$

3.

Find the modulus and the principal value of the argument of
$$
\frac{(1+i\sqrt{3})^{16}}{(\sqrt{3}-i)^{17}}
$$
 17/3
\n $1+i\sqrt{3} = 2(20^5 \frac{11}{3} + i 3i) = 2e$
\n $13 - i = 2(20^5 \frac{11}{6} - i 3i) = 2e$
\n $13 - i = 2(20^5 \frac{11}{6} - i 3i) = 2e$
\n $\frac{(1+i\sqrt{3})^{16}}{(2e^{i\pi/3})^{16}} = \frac{(2e^{i\pi/3})^{16}}{(2e^{i\pi/6})^{19}} = \frac{2^{16}}{2^{17}} = \frac{e^{i(6\pi/3)}}{2^{17}} = \frac{1}{2^{17}} = \frac{1$

 $\overline{}$

$$
= \frac{1}{2}\left[cos(8\pi + \frac{\pi}{6}) + i sin(8\pi + \frac{\pi}{6})\right]
$$

= $\frac{1}{2}\left[cos\frac{\pi}{6} + i sin\frac{\pi}{6}\right]$
modulus = $\frac{1}{2}$, principal value of argument = $\frac{\pi}{6}$.

4. Simplify
$$
\left(\frac{1+\sin \alpha + i \cos \alpha}{1+\sin \alpha - i \cos \alpha}\right)^n
$$

\nSo1⁶ : 1 = $5i n^2 d + cos^2 d = 5i n^2 d - i^2 cos^2 d$
\n= $(5i n d + i^2 cot 3 d) (sin d - i^2 cot 3 d)$
\n $|+sin d + i^2 cot 3 d = (sin d + i^2 cot 3 d) (sin d - i^2 cot 3 d) + (sin d + i^2 cot 3 d)$
\n= $(sin d + i cot 3 d) (sin d - i^2 cot 3 d) + (sin d - i^2 cot 3 d)$
\n= $(sin d + i cot 3 d) (1 + sin d - i^2 cot 3 d)$

$$
\frac{1+sin\alpha + icos\alpha}{1+sin\alpha - icos\alpha} = sin\alpha + icos\alpha
$$

$$
\frac{1+sin\alpha+icos\alpha}{1+sin\alpha-icos\alpha} = (sin\alpha+icos\alpha)\alpha
$$

=
$$
(cos(\frac{\pi}{2}-\alpha)+isin(\frac{\pi}{2}-\alpha))
$$

= cosn($\frac{\pi}{2}-\alpha$) + isinn($\frac{\pi}{2}-\alpha$)

5. If $z = \frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}+i\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ and \overline{z} is the conjugate of z prove that $(z)^{10} + (\overline{z})^1$

$$
Z = \frac{1}{52} + i\frac{1}{52} = \cos \frac{\pi}{4} + i \sin \frac{\pi}{7}
$$

$$
\overline{z} = cos \frac{\pi}{4} - i^{3} sin \frac{\pi}{4}
$$
\n
$$
(2)^{10} \times (2)^{10} = (cos \frac{\pi}{4} + i^{5}sin \frac{\pi}{4})^{10} + (cos \frac{\pi}{4} - i sin \frac{\pi}{4})^{10}
$$
\n
$$
= (cos \frac{5\pi}{2} + i sin \frac{5\pi}{2}) + (cos \frac{5\pi}{2} - i sin \frac{5\pi}{2})
$$
\n
$$
= 2 cos \frac{5\pi}{2}
$$
\n
$$
= 2 cos \frac{5\pi}{2} + i sin \frac{5\pi}{2}
$$
\n
$$
= 2 (cos \frac{5\pi}{2} + i sin \frac{5\pi}{2})
$$
\n
$$
= 2 \left(cos \frac{5\pi}{2} + i sin \frac{5\pi}{2} + i sin \frac{5\pi}{2} + i sin \frac{5\pi}{2} \right)
$$
\n
$$
= 2 \left(cos \frac{5\pi}{2} + i sin \frac{5\pi}{2} + i sin \frac{5\pi}{2} \right)
$$
\n
$$
= 2 \left(cos \frac{5\pi}{2} + i sin \frac{5\pi}{2} \right)
$$
\n
$$
= 2 \left(cos \frac{5\pi}{2} + i sin \frac{5\pi}{2} \right)
$$
\n
$$
= 2 \left(cos \frac{5\pi}{2} + i sin \frac{5\pi}{2} \right)
$$
\n<math display="</math>

6. If α , β are the roots of the equation $x^2 - 2x + 2 = 0$, prove that $\alpha^n + \beta^n = 2.2^{n/2} \cos n \pi/4$, Hence, deduce that $\alpha^8+\beta^8$

So⁽ⁿ⁾:
\n
$$
x^2-2x+2=0
$$

\n $-6\pm\sqrt{8-4ac}$

$$
= 2\pm\sqrt{4-8} = 1\pm i
$$
\n
$$
1e^{2} = 1+i \t\t 32 \t\t (cos 2x + i sin 2x)
$$
\n
$$
8 = 1+i = 52 \t\t (cos 2x + i sin 2x)
$$
\n
$$
8 = 1-i = 52 \t\t (cos 2x + i sin 2x)
$$
\n
$$
3x + 8 = 15i \t\t (cos 2x - i sin 2x)
$$
\n
$$
= 15i \t\t (cos 2x - i sin 2x)
$$
\n
$$
= 15i \t\t (cos 2x - i sin 2x)
$$
\n
$$
= 15i \t\t (cos 2x - i sin 2x)
$$
\n
$$
= 15i \t\t (cos 2x - i sin 2x)
$$
\n
$$
= 15i \t\t (cos 2x - i sin 2x)
$$
\n
$$
= 15i \t\t (cos 2x - i sin 2x)
$$
\n
$$
= 15i \t\t (cos 2x - i sin 2x)
$$
\n
$$
= 15i \t\t (cos 2x - i sin 2x)
$$
\n
$$
= 15i \t\t (cos 2x - i sin 2x)
$$
\n
$$
= 15i \t\t (cos 2x - i sin 2x)
$$
\n
$$
= 15i \t\t (cos 2x - i sin 2x)
$$
\n
$$
= 15i \t\t (cos 2x - i sin 2x)
$$
\n
$$
= 15i \t\t (cos 2x - i sin 2x)
$$
\n
$$
= 15i \t\t (cos 2x - i sin 2x)
$$
\n
$$
= 15i \t\t (cos 2x - i sin 2x)
$$
\n
$$
= 15i \t\t (cos 2x - i sin 2x)
$$
\n
$$
= 15i \t\t (cos 2x - i sin 2x)
$$
\n
$$
= 15i \t\t (cos 2x - i sin 2x)
$$
\n
$$
= 15i \t\t (cos 2x - i sin 2x)
$$
\n
$$
= 15i \t\t (cos 2x - i sin 2x)
$$
\n
$$
= 15i \t\t (cos 2
$$

7. If α, β are the roots of the equation $x^2 - 2\sqrt{3}x + 4 = 0$, Prove that $\alpha^3 + \beta^3 = 0$ and $\alpha^3 - \beta^3 = 16 i$ (HW)

8. If
$$
a = \cos 2\alpha + i \sin 2\alpha
$$
, $b = \cos 2\beta + i \sin 2\beta$, $c = \cos 2\gamma + i \sin 2\gamma$, prove that
\n
$$
\sqrt{\frac{ab}{c}} + \sqrt{\frac{c}{ab}} = 2 \cos(\alpha + \beta - \gamma)
$$
\n
$$
\frac{\sqrt{2}}{a} = 2 \cos(\alpha + \beta - \gamma)
$$
\n
$$
\frac{\sqrt{2}}{a} = 2 \cos(\alpha + \beta - \gamma)
$$
\n
$$
\frac{\sqrt{2}}{a} = 2 \cos(\alpha + \beta - \gamma)
$$
\n
$$
\frac{\sqrt{2}}{a} = 2 \cos(\alpha + \beta - \gamma)
$$
\n
$$
\frac{\sqrt{2}}{a} = 2 \cos(\alpha + \beta - \gamma)
$$
\n
$$
\frac{\sqrt{2}}{a} = 2 \cos(\alpha + \beta - \gamma)
$$
\n
$$
\frac{\sqrt{2}}{a} = 2 \cos(\alpha + \beta - \gamma)
$$
\n
$$
\frac{\sqrt{2}}{a} = 2 \cos(\alpha + \beta - \gamma)
$$
\n
$$
\frac{\sqrt{2}}{a} = 2 \cos(\alpha + \beta - \gamma)
$$
\n
$$
\frac{\sqrt{2}}{a} = 2 \cos(\alpha + \beta - \gamma)
$$
\n
$$
\frac{\sqrt{2}}{a} = 2 \cos(\alpha + \beta - \gamma)
$$
\n
$$
\frac{\sqrt{2}}{a} = 2 \cos(\alpha + \beta - \gamma)
$$
\n
$$
\frac{\sqrt{2}}{a} = 2 \cos(\alpha + \beta - \gamma)
$$
\n
$$
\frac{\sqrt{2}}{a} = 2 \cos(\alpha + \beta - \gamma)
$$
\n
$$
\frac{\sqrt{2}}{a} = 2 \cos(\alpha + \beta - \gamma)
$$
\n
$$
\frac{\sqrt{2}}{a} = 2 \cos(\alpha + \beta - \gamma)
$$
\n
$$
\frac{\sqrt{2}}{a} = 2 \cos(\alpha + \beta - \gamma)
$$
\n
$$
\frac{\sqrt{2}}{a} = 2 \cos(\alpha + \beta - \gamma)
$$
\n
$$
\frac{\sqrt{2}}{a} = 2 \cos(\alpha + \beta - \gamma)
$$
\n
$$
\frac{\sqrt{2}}{a} = 2 \cos(\alpha + \beta - \gamma)
$$
\n
$$
\frac{\sqrt{2}}{
$$

MODULE-1 Page 5

$$
dS_{0} = \frac{e}{ab} = \frac{2(d+1)^{2}}{e}
$$
\n
$$
N_0 \omega \sqrt{\frac{a_{b}}{c}} + \frac{c}{ab} = \sqrt{\frac{e}{e^{2}}(a+1)^{2} + \sqrt{\frac{-ie(a+1)^{2}}{e^{2}}}}{e}
$$
\n
$$
= \frac{e^{i(a+1)^{2}} + e^{-i(a+1)^{2}-i}}{e}
$$
\n
$$
= \frac{cos(c+1)^{2}-i) + isin(c+1)^{2}-i}+ cos(c+1)^{2}-i
$$
\n
$$
= 2 cos(c+1)^{2}-i) -i sin(c+1)^{2}-i
$$

9. If
$$
x - \frac{1}{x} = 2i \sin \theta
$$
, $y - \frac{1}{y} = 2i \sin \phi$, $z - \frac{1}{z} = 2i \sin \psi$, prove that
\n(i) $xyz + \frac{1}{xyz} = 2 \cos(\theta + \phi + \psi)$
\n(ii) $\frac{m\sqrt{x}}{\sqrt[3]{y}} + \frac{n\sqrt{y}}{m\sqrt{x}} = 2 \cos(\frac{\theta}{m} - \frac{\phi}{n})$

Solⁿ := we have
$$
x - \frac{1}{x} = 2i \sin \theta
$$

\n $x^2 - 2i \sin \theta x - 1 = 0$
\nThis is a quadratic in x
\n $0x^2 + b + c = 0$
\n $0 = 1$, $b = -2i \sin \theta$, $c = -1$
\n $\therefore x \cos \theta = \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
\n $= \frac{2i \sin \theta \pm \sqrt{-4sin^2 \theta + 4}}{2}$
\n $= \frac{2i \sin \theta \pm \sqrt{-4sin^2 \theta + 4}}{2}$

$$
x = i sin\theta \pm cos\theta
$$

\nLet $x = cos\theta + isin\theta = e^{i\theta}$
\nsimilevly $y = cos\phi + isin\phi = e^{i\phi}$
\n $z = cos\phi + isin\phi = e^{i\phi}$

Now Myz = C (0s0 tisin0) (cosp tisinp) (cosp tisinp) $= cos (9 + 9 + 4) + i sin (9 + 9 + 4)$ $= cos(C - 4 + 4) - i sin(C + 4 + 4)$
 $= cos(C - 4 + 4) - i sin(C + 4 + 4)$

$$
3.792 + \frac{1}{772} = 2005(0+0+4)
$$

10. If $\cos \alpha + 2 \cos \beta + 3 \cos \gamma = \sin \alpha + 2 \sin \beta + 3 \sin \gamma = 0$,

Prove that $\sin 3\alpha + 8 \sin 3\beta + 27 \sin 3\gamma = 18 \sin(\alpha + \beta + \gamma)$.

S0P : Log
$$
4 + 2cos\beta + 3cos\gamma = sin\alpha + 2sin\beta + 3sin\gamma = 0
$$

\n
$$
cos\alpha + 2cos\beta + 3cos\gamma + i(sin\beta + 2sin\beta + 3sin\gamma) = 0
$$
\n
$$
cos\alpha + i sin\alpha + 2 (cos\beta + i sin\beta) + 3 (cos\gamma + i sin\gamma) = 0
$$
\n
$$
cos\alpha + i sin\alpha + 2 (cos\beta + i sin\beta) + 3 (cos\gamma + i sin\gamma) = 0
$$
\n
$$
cos\alpha + i sin\alpha + 2 (cos\beta + i sin\gamma)
$$
\n
$$
cos\alpha + i sin\alpha + 2
$$
\n
$$
cos\alpha + i sin\alpha + 2
$$
\n
$$
cos\alpha + i sin\alpha + 2
$$
\n
$$
cos\alpha + i sin\alpha + 2
$$
\n
$$
cos\alpha + i sin\alpha + 2
$$
\n
$$
cos\alpha + i sin\alpha + 2
$$
\n
$$
cos\alpha + i sin\alpha + 2 (cos\beta + i sin\beta)
$$
\n
$$
cos\alpha + i sin\alpha + 2 (cos\beta + i sin\beta)
$$
\n
$$
cos\alpha + i sin\alpha + 2 (cos\beta + i sin\beta)
$$
\n
$$
cos\alpha + i sin\alpha + 2 (cos\beta + i sin\beta)
$$
\n
$$
cos\alpha + i sin\alpha + 2 (cos\beta + i sin\beta)
$$
\n
$$
cos\alpha + i sin\alpha + 2 (cos\beta + i sin\beta)
$$
\n
$$
cos\alpha + i sin\alpha + i sin\alpha + 2 (cos\alpha + i sin\beta)
$$
\n
$$
cos\alpha + i sin\alpha + i sin\alpha + i sin\alpha
$$

$$
\Rightarrow (COS3\alpha + 8COS3B + 27CO334) + i(Sin3948 sin3\beta + 27sin31)
$$

= 18 COS(A13+1) + i18 sin(A13+1)
= 18 COS(A13+1) + i18 sin(A13+1)
= 18 COS(A13+1) + i18 sin(A13+1)
= 18 COSUSU
Answer:

11.
\nIf
$$
x_r = \cos \frac{\pi}{3r} + i \sin \frac{\pi}{3r}
$$
, prove that (i) $x_1x_2x_3 \dots ad.inf. = i$ (ii) $x_0x_1x_2 \dots ad.inf. = -i$
\n $\frac{\sum d^n}{n!} - \sqrt[n]{\gamma} = \frac{\sum d^n}{3} + i \sin \frac{\pi}{3} + i \sin \frac{\pi}{3}$
\n $\therefore \sqrt[n]{\theta} = \frac{\sum d^n}{3} + i \sin \frac{\pi}{3} = \frac{\sum d^n}{3} + i \sin \frac{\pi}{3} = \frac{\sum d^n}{3} + i \sin \frac{\pi}{3} = -1$

$$
\pi_{1} = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}
$$
\n
$$
\pi_{2} = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}
$$
\n
$$
\pi_{3} = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}
$$
\n
$$
\pi_{3} = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}
$$
\n
$$
\pi_{3} = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}
$$
\n
$$
= (\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}) \left((\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}) \right) \left((\cos \frac{\pi}{3})
$$

$$
= n_{0}(n_{1}n_{2}n_{3} \cdots a_{d}inf)
$$
\n
$$
= n_{0}(i) \quad (frow first part)
$$
\n
$$
= (-1)(i)
$$
\n
$$
= -i = RMS
$$

12. If $(cos\theta + i sin\theta)(cos 3\theta + i sin 3\theta)$... $\cos(2n-1)\theta + i sin(2n-1)\theta = 1$ then show that the general value of θ is $\frac{27}{n}$

$$
\frac{501^{n}}{6} = (60^{6} - 30 + i \sin 0)(60^{3} - 120 + i \sin 30) \cdot \dots \cdot (60^{6} - 120 - i \sin (20 - 120)) = 1
$$

= 1
= 1
= 1

$$
cos(0+30+50+...(2n-1)0)+i sin(0+30+50+...+(2n-1)0)=
$$

\n $cos(1+3+5+...+(2n-1))0+i sin(1+3+5+...+(2n-1))0=1$
\n $1+3+5+...+(2n-1) is an A.P. with first+exp A$,

the number of terms n and common difference = 2

The Sum
$$
3n = \frac{n}{2} \left[2a + cn - 13d \right] = \frac{n}{2} \left[2 + (n-1)2 \right]
$$

\n $= n^2$
\n $\therefore cos(n^2\theta) + isin(n^2\theta) = 1$
\n $cos(n^2\theta) + isin(n^2\theta) = cos\theta + isin\theta$
\n $= cos(2\pi\pi) + isin(2\pi\pi)$
\n $\frac{1}{2}$
\n $cos\theta = 2\pi\pi$
\n $\sqrt{a = 2\pi\pi}$

 $\frac{v}{n^2}$ **13.** By using De Moivre's Theorem show that $\sin \alpha + \sin 2\alpha + \cdots + \sin 5\alpha = \frac{5}{3}$ $\frac{\sin 3\theta}{s}$ $S01^{\circ}$: $\frac{1-z^{6}}{1-z}$ = $|+z+z^{2}+z^{3}+z^{4}+z^{5}$ - (i)

$$
1+2+2^{2}+2^{5}+2^{4}+2^{5}=1+((038+1)\sin\alpha)+((038+1)\sin\alpha)^{2}
$$

+((038+1)\sin\alpha)^{3}+---+((038+1)\sin\alpha)^{5}

 $=$ $1 + 10004 + 100524 + 100534 + 100314 + 100554)$

$$
= C14 cos4 t cos24 t cos3x + cos3x + cos3x + cos3x
$$

\n
$$
\pi i (sin4 s sin24 s sin34 s ind4 s sin5x) - C11
$$

\nNow $\frac{1-2^{6}}{1-2} = \frac{1-(cos4+isin3^{6}}{1-(cos4+isin3^{6})} = \frac{1-(cos6x+isin6x)}{1-(cos4+isin6)}$
\n
$$
= \frac{C1-cosx+isin3}{(1-cosx)-isin6}
$$

\n
$$
= \frac{2 sin^{2}x -2 isin8x}{2 sin^{2}(x/2) -2 isin9/2 cos9/2}
$$

\n
$$
= \frac{2 sin 3x}{2 sin^{2}(x/2) -2 isin9/2 cos9/2}
$$

\n
$$
= \frac{2 sin 3x}{2 sin^{2}(x/2) -2 isin9/2 cos9/2}
$$

\n
$$
= \frac{2 sin 3x}{2 sin^{2}(x/2) -2 isin9/2 cos9/2}
$$

\n
$$
= \frac{2 sin 3x}{2 sin^{2}(x/2) -2 isin9/2 cos9/2}
$$

\n
$$
= \frac{sin 3x}{2 sin^{2}(x/2) -2 isin9/2 +i cos9/2}
$$

\n
$$
= \frac{sin 3x}{sin(x/2)} [cos(\frac{\pi}{2} - 3x) -i sin(\frac{\pi}{2} - 3x)][cos(\frac{\pi}{2} - \frac{x}{2})+isin(\frac{\pi}{2} - \frac{y}{2})]
$$

\n
$$
= \frac{sin 3x}{sin(x/2)} e^{i(\frac{\pi}{2} - 3x)} + i(\frac{\pi}{2} - \frac{x}{2})
$$

\n
$$
= \frac{sin 3x}{sin(x/2)} e^{i(\frac{\pi}{2} - 3x)} + i(\frac{\pi}{2} - \frac{x}{2})
$$

\n
$$
= \frac{sin 3x}{sin(x/2)} e^{i(\frac{\pi x}{2})}
$$

\n
$$
= \frac{sin 3x}{sin(x/2)} [cos(\frac{\pi x}{2}) + i sin(\frac{\pi x}{2}) - C\pi]
$$

$$
(xwm Ci), Cii) and Ciii),
$$
 $(amlewing the imaginaryfour+s)sinxt sin2d+sin3d+sinuat sin5d = $\frac{sin3q}{sin(d12)}$$

Applications of De-Moivre's Theorem

Wednesday, October 20, 2021 2:26 PM

$$
no. of x^{\text{out}}
$$

z deg of eqn

 \overline{v}

´2kΠ+ጔ^
-

ROOTS OF ALGEBRAIC EQUATIONS:

De Moivre's theorem can be used to find the roots of an algebraic equation. General values of $\cos \theta = \cos(2k\pi + \theta)$ and $\sin \theta = \sin(2k\pi + \theta)$ where k is an integer.

To solve the equation of the type $z^n = \cos \theta + i \sin \theta$, we apply De Moivre's theorem $\mathbf{1}$ $\frac{1}{n} = \cos \frac{\theta}{n}$ $\frac{b}{n} + i \sin \frac{b}{n}$

This shows that $\left(\cos\frac{\theta}{n}\right)$ $\frac{\theta}{n}$ + *i* sin $\frac{\theta}{n}$ is one of the n roots of zⁿ

The other roots are obtain by expressing the number in the general form

$$
z = \left\{ \cos(2k\pi + \theta) + i \sin(2k\pi + \theta) \right\}^{\frac{1}{n}} = \cos\left(\frac{2k\pi + \theta}{n}\right) + i \sin\left(\frac{2k\pi + \theta}{n}\right)
$$

Taking k = 0, 1, 2,.............,(n - 1). We get n roots of the equation.

Note: (i) Complex roots always occur in conjugate pair if coefficients of different powers of x including constant terms in the equation are real.

 $\overline{2}$

(ii) Continued products mean products of all the roots of the equation.

SOME SOLVED EXAMPLES:

1. If
$$
\omega
$$
 is a cube root of unity, prove that $(1 - \omega)^6 = -27$
\n $\begin{array}{ccc}\n\sum 0 & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{5} \\$

$$
\therefore Z = (cos 0 + isin 0)^{1/3} = (cos 2kn + isin 2kn)
$$

\n
$$
= (cos 2k\pi + isin 2k\pi) \text{ where } k = 0, 1, 2
$$

\n
$$
k = 0 \therefore Z_0 = cos 0 + isin 0 = 1
$$

\n
$$
k = 2, Z_1 = cos 2T_1 + isin 2T_1 = 0
$$

\n
$$
k = 2, Z_2 = cos 4T_1 + isin \frac{4T_1}{3} = (cos 2T_1 + isin \frac{2T_1}{3})^2 = \omega^2
$$

$$
Mow
$$
 1+ w^2 = 1+ $cos^2 \frac{2T}{3} + isin^2 \frac{4T}{3} + cos^2 \frac{4T}{3} + isin^2 \frac{4T}{3}$

$$
2 + (-\frac{1}{2} + i\frac{\sqrt{3}}{2}) + (-\frac{1}{2} - i\frac{\sqrt{3}}{2}) = 1 - 1 = 0
$$

$$
1+u^{2} = -u
$$

\n
$$
(-u)^{6} = ((1-u)^{2})^{3} = (1-2u+u^{2})^{3} = (1+u^{2}-2u)^{3}
$$

\n
$$
= (-u-2u)^{3} = (-3u)^{3} = -2+u^{3}
$$

\nbut $u^{3} = 1$

$$
\frac{1}{2} \left(1-\omega\right)^{k} = -27.
$$

2. Find all the values of
$$
\frac{3}{3}(1+i)/\sqrt{2} + i\frac{3}{(1-i)/\sqrt{2}}
$$

\n50¹⁰
\n1 e²
\n2. Find all the values of $\frac{3}{3}(1+i)/\sqrt{2} + i\frac{3}{(1-i)/\sqrt{2}}$
\n
$$
= (205 \frac{\pi}{4} + i \frac{5}{10} - i\frac{1}{10})^{\frac{1}{3}}
$$
\n
$$
= (205 (2K\pi + \frac{\pi}{4}) + i \sin \left(\frac{2K\pi + \frac{\pi}{4}}{4} \right))^{\frac{1}{3}}
$$
\n
$$
= \left[205 \left(\frac{8K+1}{14} \right) \pi + i \sin \left(\frac{8K+1}{12} \right) \right]^{\frac{1}{3}}
$$
\n3. $\sqrt{1 + i} = \frac{3}{12}$
\n3. $\sqrt{1 + i} = \frac{3}{12}$
\n
$$
= \frac{3}{12} \pi + i \sin \left(\frac{8K+1}{12} \right) \pi + i \sin \left(\frac{8K+1}{12} \right) \pi
$$
\n
$$
= \frac{3}{12} \pi + i \sin \left(\frac{8K+1}{12} \right) \pi + i \sin \left(\frac{8K+1}{12} \right) \pi
$$
\n
$$
= \frac{3}{12} \pi + i \sin \left(\frac{8K+1}{12} \right) \pi + i \sin \left(\frac{8K+1}{12} \right) \pi
$$

Similavl
\n
$$
\frac{3}{\sqrt{(1-i)/52}} = \left(\frac{1}{52} - \frac{i}{52}\right)^{1/3}
$$
\n
$$
= \frac{cos(8k+1)}{12} = \frac{i}{\sqrt{2}} - \frac{i}{\sqrt{2}} = \frac{1}{\sqrt{2}} - \frac{i}{\sqrt
$$

$$
= {cos(8k+1) \over 12})\pi - i sin(8k+1) \over k = 0, 1, 2
$$

$$
\frac{1}{2}\sqrt{(1+i)\sqrt{2}+3(1-i)}\sqrt{2} = 2cos(\frac{8k+1}{12})\pi when k=0,1,2
$$

= 2 cos 1/2 2 cos 9/2 2 cos 1/2

3. Find the cube roots of
$$
(1 - \cos \theta - i \sin \theta)
$$
.
\n
$$
\frac{\sin 2\theta}{2} = (2 \sin^2 \frac{\theta}{2} - 2i \sin \frac{\theta}{2} \cos \frac{\theta}{2})^{1/3}
$$
\n
$$
= (2 \sin^2 \frac{\theta}{2})^3 \left[\sin \frac{\theta}{2} - i \cos \frac{\theta}{2} \right]^{1/3}
$$
\n
$$
= (2 \sin \frac{\theta}{2})^{1/3} \left[\cos (\frac{\pi}{2} - i \sin (\frac{\pi}{2} - i \sin \frac{\pi}{2})) \right]^{1/3}
$$
\n
$$
= (2 \sin (\frac{\theta}{2}))^{1/3} \left[\cos (\frac{\theta}{2} - \frac{\pi}{2}) + i \sin (\frac{\pi}{2} - \frac{\pi}{2})) \right]^{1/3}
$$
\n
$$
= (2 \sin (\frac{\theta}{2}))^{1/3} \left[\cos (2 \sin (\frac{\theta}{2} - \frac{\pi}{2})) + i \sin (\frac{\theta}{2} - \frac{\pi}{2})) \right]^{1/3}
$$
\n
$$
= (2 \sin (\frac{\theta}{2}))^{1/3} \left[\cos (2 \sin (\frac{\theta}{2} - \frac{\pi}{2})) + i \sin (\frac{2 \sin (\frac{\theta}{2} - \frac{\pi}{2}))}{2}) \right]^{1/3}
$$
\n
$$
= (2 \sin \frac{\theta}{2})^{1/3} \left[\cos (\frac{(\frac{\pi}{2} - i \pi + \theta)}{2}) + i \sin (\frac{(\frac{\pi}{2} - i \pi + \theta)}{2}) \right]^{1/3}
$$
\n
$$
= (2 \sin \frac{\theta}{2})^{1/3} \left[\cos (\frac{(\frac{\pi}{2} - i \pi + \theta)}{2}) + i \sin (\frac{(\frac{\pi}{2} - i \pi + \theta)}{2}) \right]
$$

$$
= (2sin \frac{\alpha}{2}) \int cos(\frac{\pi}{6}) t_1 sin(\frac{\pi}{6})
$$

Putting $k = 0, 1, 2$ we get all the roots.

4. Find the continued product of all the value of
$$
(-i)^{2/3}
$$

\nSoI⁶ := $(-i)^{2/3}$
\n
$$
= ((-i)^{2/3})^{1/3} = (-1)^{1/3}
$$
\n
$$
= [C \cup S T1 + i S \cap T]
$$
\n
$$
= [C \cup S(2K T1 + T1) + i S \cap (2K T1 + T1)]^{1/3}
$$
\n
$$
= C \cup S(2K T1 + T1) + i S \cap (2K T1 + T1)
$$
\n
$$
= C \cup S(2K T1 + T1) + i S \cap (2K T1 + T1)
$$
\n
$$
= C \cup S(2K T1 + T1) + i S \cap (2K T1 + T1)
$$
\n
$$
= C \cup S(2K T1 + T1) + i S \cap (2K T1 + T1)
$$
\n
$$
= C \cup S(2K T1 + T1) + i S \cap (2K T1 + T1)
$$
\n
$$
= C \cup S(2K T1 + T1) + i S \cap (2K T1 + T1)
$$
\n
$$
= C \cup S(2K T1 + T1) + i S \cap (2K T1 + T1)
$$

$$
20 = 20 = 11 + i sin \frac{11}{3} + 20
$$

$$
z_1 = 20 sin \frac{1}{3} + i sin \frac{1}{3} + 20
$$

$$
z_2 = 20 sin \frac{5\pi}{3} + i sin \frac{5\pi}{3} + 20
$$

: The continued product = Zo. Z1. Z2 = $(COS \frac{\pi}{3} + i Sin \frac{\pi}{3})$ $(COS \pi + i Sin \pi)$ $(COS \frac{5\pi}{3} + i Sin \frac{5\pi}{3})$ $=$ $CO^{5}(\sqrt[1]{3}+\sqrt{1}+\frac{51}{3})+\sqrt{151}(\sqrt[1]{3}+\sqrt{1}+\frac{57}{3})$ $=$ $COS(3\pi)$ tisin (3 π) $= C^{-1}(\lambda^{\dagger}(\circ)) = -1$

5. Find all the values of
$$
\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{3/4}
$$
 and show that their continued product is 1. $(\perp + \cdot \sqrt{3})$
 $(\perp + \cdot) \cdot 5 \cdot 3 = 1$

5. Find all the values of
$$
(\frac{1}{2} + i\frac{1}{2})
$$
 and show that their continued product is 1. $(+i\omega)$
\n
$$
(\frac{1}{2} + i\frac{\sqrt{3}}{2})^{3/4} = \left((0.5 + 1.5i)\sqrt{13} \right)^{3/4}
$$
\n
$$
= (0.5 + 1.5i)\sqrt{13}
$$

6. SOLVE: $x^7 + x^4 + x^3$

$$
\frac{5019}{2} = 277777773 + 1 = 0
$$

27 (27 - 1) + (27 - 1) = 0
27 (27 - 1) (27 - 1) = 0

Mou $\pi^{3}+1=0$ =) $\pi^{3}=-1$ =) $\pi^{3}=105\pi+i\sin\pi$

$$
\Rightarrow \pi^{3} = cos(2k\pi + \pi)t i sin(2k\pi + \pi)
$$
\n
$$
\pi^{3} = cos(2k\pi i)\pi + i sin(2k\pi i)\pi
$$
\n
$$
\Rightarrow \pi = [cos(2k\pi i)\pi + i sin(2k\pi i)\pi]
$$
\n
$$
\approx = cos(2k\pi i)\pi + i sin(2k\pi i)\pi
$$
\n
$$
\approx = cos(2k\pi i)\pi + i sin(2k\pi i)\pi
$$
\nwhere k = 0,1,2

$$
\frac{1}{2} \text{ The roots over the number of sides of the number of sides.}
$$
\n
$$
\frac{1}{3} + i \sin \frac{\pi}{3}, \quad \omega \text{ sufficient, } \cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3}
$$

Move: $x^4 + 1 = 0 \Rightarrow x^4 = -1 \Rightarrow x^4 = cos \pi + i sin \pi$ $= cos(2k+1)\pi + isin(2k+1)\pi$

$$
\therefore n = cos(\frac{2kt}{4})\pi + i sin(\frac{2kt}{4})\pi
$$

 \therefore The net 4 roots are

 $\mathcal{L}(\mathcal{L}(\mathcal{L}))$ and $\mathcal{L}(\mathcal{L}(\mathcal{L}))$ and $\mathcal{L}(\mathcal{L}(\mathcal{L}))$

$$
cos \frac{\pi}{4} + isin \frac{\pi}{4} + cos \frac{3\pi}{4} + isin \frac{\pi}{4}, cos \frac{5\pi}{4} + isin \frac{\pi}{4}
$$
\n
$$
cos \frac{3\pi}{4} + isin \frac{\pi}{4}
$$
\n
$$
sin \frac{5\pi}{4} + i \sin \frac{2\pi}{4} + i \
$$

$$
\gamma_{6} = -1 = \cos \pi + i \sin \pi = \cos (2k \pi) \pi + i \sin (2k \pi) \eta
$$
\n
$$
\gamma = \left[\cos (2k \pi) \pi + i \sin (2k \pi) \pi \right]^{1/6}
$$
\n
$$
= \cos \left(\frac{2k \pi}{3} \pi + i \sin \left(\frac{2k \pi}{3} \pi \right) \right]
$$
\n
$$
\omega_{6} = \omega_{6} \left(\frac{2k \pi}{3} \pi + i \sin \left(\frac{2k \pi}{3} \pi \right) \right)
$$
\n
$$
\omega_{7} = \omega_{7} \frac{\pi}{6} + i \sin \frac{\pi}{2}
$$
\n
$$
\gamma_{8} = \omega_{8} \frac{\pi}{6} + i \sin \frac{\pi}{2}
$$
\n
$$
\gamma_{1} = \omega_{8} \frac{3\pi}{6} + i \sin \frac{\pi}{6}
$$
\n
$$
\gamma_{2} = \omega_{5} \frac{\pi}{6} + i \sin \frac{\pi}{6}
$$
\n
$$
\gamma_{3} = \omega_{5} \frac{\pi}{6} + i \sin \frac{\pi}{6}
$$
\n
$$
\gamma_{4} = \omega_{5} \frac{\pi}{6} + i \sin \frac{\pi}{6}
$$
\n
$$
\gamma_{5} = \omega_{5} \frac{\pi}{6} + i \sin \frac{\pi}{6}
$$
\n
$$
\gamma_{6} = \omega_{6} \frac{\pi}{6} + i \sin \frac{\pi}{6}
$$
\n
$$
\gamma_{7} = \omega_{7} \frac{\pi}{6} + i \sin \frac{\pi}{6}
$$
\n
$$
\gamma_{8} = \omega_{8} \frac{\pi}{6} + i \sin \frac{\pi}{6}
$$
\n
$$
\gamma_{9} = \omega_{8} \frac{\pi}{6} + i \sin \frac{\pi}{6}
$$
\n
$$
\gamma_{1} = \omega_{8} \frac{\pi}{6} + i \sin \frac{\pi}{6}
$$
\n
$$
\gamma_{1} = \omega_{1} \frac{\pi}{6} + i \sin \frac{\pi}{6}
$$
\n
$$
\gamma_{2} = \omega_{1} \frac{\pi}{6} + i \sin \frac{\pi}{6}
$$
\n
$$
\gamma_{1} = \omega_{1} \frac{\pi}{6} + i \sin \frac{\pi}{6}
$$
\n

$$
\underline{\underline{E_{X}}}: \eta^{4}-\eta^{3}+\eta^{2}-\eta+1=0.
$$
\n
$$
\text{multiply by } \eta+1 \implies \eta^{5}+1=0.
$$

9. Find the roots common to $x^4 + 1 = 0$ and $x^6 - i = 0$.

$$
M = (-1)^{1/4}
$$

\n
$$
M = (-1)^{1/4}
$$

\n
$$
= (C^{3} (2k+1)T) + i \sin(2k+1)T
$$

\n
$$
= (C^{3} (2k+1)T) + i \sin(2k+1)T
$$

\n
$$
= (C^{3} \times (2k+1)T) + i \sin(2k+1)T
$$

\n
$$
= (C^{3} \times (2k+1)T) + i \sin(2k+1)T
$$

\n
$$
= (C^{3} \times (2k+1)T) + i \sin(2k+1)T
$$

\n
$$
= (C^{3} \times (2k+1)T) + i \sin(2k+1)T
$$

\n
$$
= (C^{3} \times (2k+1)T) + i \sin(2k+1)T
$$

\n
$$
= (C^{3} \times (2k+1)T) + i \sin(2k+1)T
$$

\n
$$
= (C^{3} \times (2k+1)T) + i \sin(2k+1)T
$$

\n
$$
= (C^{3} \times (2k+1)T) + i \sin(2k+1)T
$$

\n
$$
= (C^{3} \times (2k+1)T) + i \sin(2k+1)T
$$

\n
$$
= (C^{3} \times (2k+1)T) + i \sin(2k+1)T
$$

\n
$$
= (C^{3} \times (2k+1)T) + i \sin(2k+1)T
$$

\n
$$
= (C^{3} \times (2k+1)T) + i \sin(2k+1)T
$$

\n
$$
= (C^{3} \times (2k+1)T) + i \sin(2k+1)T
$$

\n
$$
= (C^{3} \times (2k+1)T) + i \sin(2k+1)T
$$

\n
$$
= (C^{3} \times (2k+1)T) + i \sin(2k+1)T
$$

\n
$$
= (C^{3} \times (2k+1)T) + i \sin(2k+1)T
$$

\n
$$
= (C^{3} \times (2k+1)T) + i \
$$

10. If $(1+x)^6 + x^6 = 0$ show that $x = -\frac{1}{2}$ $\frac{1}{2} - \frac{i}{2}$ $\frac{i}{2}$ cot $\frac{\theta}{2}$ $\frac{0}{2}$

$$
\frac{50M!}{\left(\frac{1+\eta}{\eta}\right)^{6}+1=0}
$$
\n
$$
\left(\frac{1+\eta}{\eta}\right)^{6}=1 = \cos(\pi + i\sin\pi = \cos(2n+1)\pi + i\sin(\pi + i\pi))
$$
\n(2n+1)

$$
\frac{1+n}{n} = \left[CO^{s}(2n+1)\pi + i sin(2n+1)\pi\right]^{1/6}
$$
\n
$$
= CO^{s}\left(\frac{2n+1}{6}\right)\pi + i sin\left(\frac{2n+1}{6}\right)\pi \text{ where}
$$
\n
$$
n = 0, 1, 2, 3, 4, 5
$$
\n
$$
10 + i2n+11 = 0
$$

$$
1 + \frac{1 + \eta}{\eta} = \cos\theta + i \sin\theta
$$

$$
\therefore \frac{1}{\eta} + 1 = \cos\theta + i \sin\theta
$$

$$
\frac{1}{\eta} = (\cos\theta - 1) + i \sin\theta
$$

$$
\therefore \eta = \frac{1}{\cos\theta + 1 + i \sin\theta}
$$

$$
\frac{(cos(\theta-1) + issin(\theta-1)) - isin\theta}{(cos(\theta-1) + isin\theta)} \times \frac{(cos(\theta-1) - isin\theta)}{((cos(\theta-1) - isin\theta)}
$$

$$
=\frac{(cos\theta-1)^{-1}sin\theta}{(cos\theta-1)^{2}+sin^{2}\theta}=\frac{(cos\theta-1)^{-1}sin\theta}{2(1-cos\theta)}
$$

$$
= -\frac{1}{2} - \frac{1}{2} \underbrace{\frac{\sin \theta}{1 - \cos \theta}}_{1 - \cos \theta}
$$
\n
$$
= -\frac{1}{2} - \frac{1}{2} \underbrace{2 \sin \theta |_{2} \cos \theta |_{2}}_{2 \sin^{2} \theta |_{2}}
$$
\n
$$
\pi = -\frac{1}{2} - \frac{1}{2} \cot \frac{\theta}{2} \quad \text{where } \theta \in \left(\frac{2n+1}{6}\right) \pi
$$

11. If one root of $x^4 - 6x^3 + 15x^2 - 18x + 10 = 0$ is $1 + i$, find all other roots.

$$
\frac{5019!}{60!} = 111^{\circ} \text{ is a root of } n^4 - 6n^3 + 15n^2 - 18n + 10 = 0
$$

11 - 1 is also a root of $n^4 - 6n^3 + 15n^2 - 18n + 10 = 0$
(6 m $p1e\gamma$ r $v00 + 5$ 8140 96

$$
divide the given eqn by n2-2n+2
$$

$$
(n^{4}-6n^{3}+15n^{2}-18n+10)= (n^{2}-2n+2)(n^{2}-4n+5)
$$

i- the remaining two roots are the roots of $equation n^2-4n+5=0$

$$
\frac{1}{4}\eta = \frac{-b\pm\sqrt{b^{2}-4ac}}{2a} = \frac{-(-4)\pm\sqrt{u^{2}-4c\cdot sc\cdot 5}}{2c\cdot 2}
$$

$$
x = 2 \pm i
$$

4. The required remaining roots are $1 - i$ and $2 \pm i$

12. If $\alpha, \alpha^2, \alpha^3, \alpha^4$, are the roots of $x^5 - 1 = 0$, find them & show that $(1 - \alpha)(1 - \alpha^2)(1 - \alpha^3)(1 - \alpha^4) = 5$.

$$
75-1=0
$$

\n $75-1=0$
\n $75-1=cos2k\pi +isin2k\pi$
\n $7=cos2k\pi +isin2k\pi$
\n $k=0,1,2,3,4$
\n $70=cos0+isin0=1$

$$
λ_1 = cos 2\frac{π}{5} + i sin 2\frac{π}{5} = α
$$
\n
$$
λ_2 = cos α\frac{π}{5} + i sin α\frac{π}{5} = α^2
$$
\n
$$
λ_3 = cos 6\frac{π}{5} + i sin 6\frac{π}{5} = α^3
$$
\n
$$
λ_4 = cos 6\frac{π}{5} + i sin 6\frac{π}{3} = α^4
$$
\n
$$
1, α_1 α^2, α^3, and α^4, α^2, α^3 = α^4
$$
\n
$$
1, α_1 α^2, α^3, and α^4, α^2, α^3 = α^3 (α - α^3) (α - α^3)
$$
\n
$$
1, α_1 5 - 1 = (α - 1) (α - α) (α - α^2) (α - α^3) (α - α^4)
$$
\n
$$
1, α^5 - 1 = (α - α) (α - α^2) (α - α^3) (α - α^4)
$$
\n
$$
1, α^4 + α^3 + α^2 + α + 1 = (α - α) (α - α^2) (α - α^2) (α - α^3) (α - α^4)
$$
\n
$$
1, α^4 + α^3 + α^2 + α + 1 = (α - α) (α - α^2) (α - α^2) (α - α^3) (α - α^4)
$$
\n
$$
1, α^4 + α^3 + α^2 + α + 1 = (α - α) (α - α^2) (α - α^2) (α - α^3) (α - α^4)
$$
\n
$$
1, α^4 + α^3 + α^2 + α + 1 = (α - α) (α - α^2) (α - α^2) (α - α^3) (α - α^4)
$$
\n
$$
1, α^3 + α^2 + α + 1 = (α - α) (α - α^2) (α - α^3) (α - α^3) (α - α^4)
$$
\n
$$
1, α^3 + α^2 + α + 1 = (α - α) (α - α^2) (α - α^3) (α - α^3) (α - α^4)
$$
\n
$$
1, α^2 + α^2 + α + 1 = (α - α) (α - α^2) (α - α^3) (α - α^3) (α - α^4)
$$
\n<math display="block</math>

$$
\frac{Z}{Z-1} = \frac{cos(\frac{4k+1}{8})}{8} \pi + i sin(\frac{4k+1}{8})\pi
$$

$$
\left(\begin{array}{c}\overline{}\\ \hline \\ \end{array}\right)\begin{array}{c}\text{if } \overline{}\\ \text{if } \overline{}\\ \hline \end{array}
$$

$$
\frac{Z}{2-1} = \cos\theta + i \sin\theta
$$

14. If ω is a 7th root of unity, prove that $S = 1 + \omega^n + \omega^{2n} + \omega^{3n} + \omega^{4n} + \omega^{5n} + \omega^{6n} = 7$ if n is a multiple of 7 and is equal to zero otherwise. $\sqrt{2}$

$$
300^{\circ} = 22 \times 10^{3/4} = (cos 2k\pi + 1)sin 2k\pi + 120,12,3,4,5,6
$$
\nLet $w = cos 2\pi + 1 sin 2\pi$
\n
$$
cos 2\pi + 1 sin 2\pi
$$
\n
$$
cos 2\pi + 1 sin 2\pi
$$
\n
$$
cos 2\pi + 1 sin 2\pi = 1.
$$
\n
$$
cos 2\pi + 1 sin 2\pi = 1.
$$
\n
$$
cos 2\pi + 1 sin 2\pi = 1.
$$
\n
$$
cos 2\pi + 1 sin 2\pi = 1.
$$
\n
$$
cos 2\pi + 1 sin 2\pi = 1.
$$
\n
$$
cos 2\pi + 1 sin 2\pi = 1.
$$
\n
$$
cos 2\pi + 1 sin 2\pi = 1.
$$
\n
$$
cos 2\pi + 1 sin 2\pi = 1.
$$
\n
$$
cos 2\pi + 1 sin 2\pi = 1.
$$
\n
$$
cos 2\pi + 1 sin 2\pi = 1.
$$
\n
$$
sin 2\pi + 1 sin 2\pi = 1.
$$
\n
$$
sin 2\pi + 1 sin 2\pi + 1 sin 2\pi = 1.
$$
\n
$$
cos 2\pi + 1 sin 2\pi = 1.
$$
\n
$$
sin 2\pi + 1 sin 2\pi + 1 sin 2\pi = 1.
$$
\n
$$
cos 2\pi + 1 sin 2\pi = 1.
$$
\n
$$
cos 2\pi + 1 sin 2\pi = 1.
$$
\n
$$
cos 2\pi + 1 sin 2\pi = 1.
$$
\n
$$
cos 2\pi + 1 sin 2\pi = 1.
$$
\n
$$
cos 2\pi + 1 sin 2\pi = 1.
$$
\n
$$
cos 2\pi + 1 sin 2\pi = 1.
$$
\n
$$
cos 2\pi + 1 sin 2\pi = 1.
$$
\n
$$
cos 2\pi + 1 sin 2\pi = 1.
$$
\n
$$
sin 2\pi + 1 sin 2\pi = 1.
$$
\n
$$
sin 2\pi + 1 sin
$$

$$
S = 1 + w^{h} + w^{2h} + w^{3h} + \cdots + w^{6h}
$$
\n
$$
= \frac{1 - w^{3h}}{1 - w^{h}} \qquad \left(\text{sum of } 7 + \text{terms of } w \cdot p \right)
$$
\n
$$
= \frac{1 - w^{2h}}{1 - w^{h}} \qquad \text{(sum of } 7 = w^{h})
$$
\n
$$
= 5 = \frac{1 - 1}{1 - w^{h}} = \frac{0}{1 - w^{h}} = 0.
$$

15. Prove that
$$
\sqrt{1 + \sec(\theta/2)} = (1 + e^{i\theta})^{-1/2} + (1 + e^{-i\theta})^{-1/2}
$$

\nSo19 := 7σ show that $\sqrt{1 + \sec(\theta/2)} = (1 + e^{i\theta})^{-1/2} + (1 + e^{-i\theta})^{-1/2}$
\n $\sqrt{1 + e^{i\theta}} = \sqrt{1 + e^{i\theta}}$

sawming both sides
\n
$$
1+sec\frac{\theta}{2} = \frac{1}{1+e^{i\theta}} + \frac{1}{1+e^{i\theta}} + \frac{2}{\sqrt{(1+e^{i\theta})(1+e^{i\theta})}} = \frac{1}{1+e^{i\theta}} + \frac{1}{1+e^{i\theta}} + \frac{2}{\sqrt{(1+e^{i\theta})(1+e^{i\theta})}} = \frac{1}{1+e^{i\theta}} + \frac{e^{i\theta}}{1+e^{i\theta}} + \frac{2}{\sqrt{1+e^{i\theta}+e^{i\theta}+e^{i\theta}}}} = \frac{1+e^{i\theta}}{1+e^{i\theta}} + \frac{2}{\sqrt{2+[e^{i\theta}+e^{i\
$$

$$
\sqrt{2+2cos\theta}\qquad\sqrt{22172039}
$$

$$
= 14 \frac{2}{\sqrt{2(2cos^2{\frac{\varphi}{2}})}} = 1 + \frac{2}{2cos^{\varphi}/2}
$$

$$
=1+sec\frac{\theta}{2}
$$

= LHS.

HYPERBOLIC FUNCTIONS

Monday, October 25, 2021 1:00 PM

CIRCULAR FUNCTIONS:

From Euler's formula, we have $e^{i\theta} = \cos \theta + i \sin \theta$ and $e^{-i\theta}$

$$
\therefore \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \quad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}
$$

If $z = x + iy$ is complex number, then $\cos z = \frac{e^{iz} + e^{-i}z}{2i}$ $\frac{e^{iz}+e^{-iz}}{2}$, $\sin z = \frac{e^{iz}-e^{-i}}{2i}$ $\frac{c}{2}$

These are called circular function of complex numbers.

HYPERBOLIC FUNCTIONS:

If x is real or complex, then sine hyperbolic of x is denoted by sinh x and is given as, sinh $x = \frac{e^{x} - e^{-x}}{2}$ $\frac{c}{2}$ and Cosine hyperbolic of x is denoted by $cosh x$ and is given as, $\cosh x = \frac{e^{x} + e^{-x}}{2}$ $\frac{c}{2}$

From above expressions, other hyperbolic functions can also be obtained as

 $\tan hx = \frac{s}{a}$ $\frac{\sinh x}{\cosh x} = \frac{e^x - e^-}{e^x + e^-}$ $\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$, cosechx = $\frac{1}{\sinh}$ $\frac{1}{\sinh x} = \frac{2}{e^x-1}$ $\frac{2}{e^{x}-e^{-x}}$, sech $x=\frac{1}{\cosh x}$ $\frac{1}{\cosh x} = \frac{2}{e^x + 1}$ $\frac{2}{e^{x}+e^{-x}}$, and coth $x = \frac{1}{\tan x}$ $\frac{1}{\tanh x} = \frac{e^x + e^-}{e^x - e^-}$ $rac{e}{e^x}$

TABLE OF VALUES OF HYPERBOLIC FUNCTION:

From the definitions of sinhx, cos x, tanhx, we can obtain the following values of hyperbolic function.

Note: since $\tanh(-\infty) = -1$, $\tanh(0) = 0$, $\tanh(\infty) = 1$

 \therefore |tanh x| \leq 1

RELATION BETWEEN CIRCULAR AND HYPERBOLIC FUNCTIONS :

FORMULAE ON HYPERBOLIC FUNCTIONS :

PERIOD OF HYPERBOLIC FUNTIONS:

 $sinh(2\pi i + x) = sinh(2\pi i) cosh x + cosh(2\pi i) sinh x$

 $=$ i sin $2\pi \cosh x + \cos 2\pi \sinh x$

 $= 0 + \sinh x$ $=$ sinh x

Hence $sinh x$ is a periodic function of period 2π i

Similarly we can prove that $cosh x$ and $tanh x$ are periodic functions of period 2π i and π i.

DIFFERENTIATION AND INTRGRATION :

(i) If
$$
y = \sinh x
$$
,
\n
$$
y = \frac{e^{x} - e^{-x}}{2}
$$
\n
$$
\therefore \frac{dy}{dx} = \frac{d}{dx} \left(\frac{e^{x} - e^{-x}}{2} \right) = \frac{e^{x} + e^{-x}}{2} = \cosh x
$$

If
$$
y = \sinh x
$$
, $\frac{dy}{dx} = \cosh x$

(ii) If
$$
y = \cosh x
$$
,
\n
$$
y = \frac{e^{x} + e^{-x}}{2}
$$
\n
$$
\therefore \frac{dy}{dx} = \frac{d}{dx} \left(\frac{e^{x} + e^{-x}}{2} \right) = \frac{e^{x} - e^{-x}}{2} = \sinh x
$$

$$
\text{If } y = \cosh x, \frac{dy}{dx} = \sinh x
$$

(iii) If
$$
y = \tanh x
$$
,
\n
$$
y = \frac{\sinh x}{\cosh x}
$$
\n
$$
\therefore \frac{dy}{dx} = \frac{\cosh x \cdot \cosh x - \sinh x \cdot \sinh x}{\cosh^2 x} = \frac{1}{\cosh^2 x} = \operatorname{sech}^2 x
$$
\nIf $y = \tanh x$, $\frac{dy}{dx} = \operatorname{sech}^2 x$

$$
y = \tan x, \frac{d}{dx} = \sec x
$$

Hence, we get the following three results
\n
$$
\int \cosh x \, dx = \sinh x
$$
, $\int \sinh x \, dx = \cosh x$, $\int \operatorname{sech}^2 x dx = \tanh x$

$$
\frac{10/26/202110.29 \text{ AM}}{1. \text{ If } \tanh x = \frac{1}{2}, \text{ find } \sinh 2x \text{ and } \cosh 2x}
$$
\n
$$
\frac{1}{2} \int \ln \sinh 2x \text{ and } \cosh 2x
$$
\n
$$
\frac{1}{1 - \tanh^{2}x} = \frac{2 \frac{1}{2} \tanh x}{1 - \frac{1}{2} \tanh^{2}x} = \frac{2 \frac{1}{2}}{1 - \left(\frac{1}{2}\right)^{2}} = \frac{1}{1 - \frac{1}{2}} = \frac{2}{3}
$$
\n
$$
\frac{1}{1 - \tanh^{2}x} = \frac{1 + \frac{1}{2} \tanh^{2}x}{1 - \frac{1}{2} \tanh^{2}x} = \frac{1 + \frac{1}{2} \tanh^{2}x}{1 - \frac{1}{2} \tanh^{2}x} = \frac{1}{\frac{1}{2}} = \frac{5}{3}
$$
\n
$$
\frac{1}{2} \frac{1}{1 - \frac{1}{2}} = \frac{5}{3}
$$
\n
$$
\frac{1}{2} \frac{1}{1 - \frac{1}{2}} = \frac{2}{3}
$$
\n
$$
\frac{1}{2} \frac{1}{1 - \frac{1}{2}} = \frac{2}{3}
$$
\n
$$
\frac{1}{2} \frac{1}{1 - \frac{1}{2}} = \frac{2}{3}
$$
\n
$$
\frac{1}{2} \frac{1}{1 - \frac{1}{2}} = \frac{2}{3}
$$
\n
$$
\frac{1}{2} \frac{1}{1 - \frac{1}{2}} = \frac{1}{2} \Rightarrow \frac{1}{2} \frac{1}{1 - \frac{1}{2}} = \frac{1}{2} \Rightarrow 2e^{2x} - 2 = e^{2x} + 1
$$
\n
$$
\frac{1}{2} \frac{1}{1 - \frac{1}{2}} = \frac{1}{2} \Rightarrow 2e^{2x} - 2 = e^{2x} + 1
$$
\n
$$
\frac{1}{2} \frac{1}{1 - \frac{1}{2}} = \frac{1}{2} \Rightarrow \frac{1}{2} \frac{1}{1 - \frac{1}{2}} = \frac{1}{2} \Rightarrow 2e^{2x} - 2 = e^{2x} + 1
$$

$$
\Rightarrow e^{2\pi} = 3 \Rightarrow e^{2\pi} = 3
$$

$$
\frac{3-\frac{1}{3}}{2}=\frac{8}{6}=\frac{4}{3}
$$

\n $\frac{2}{3}=\frac{8}{6}=\frac{4}{3}$
\n $\frac{10}{6}=\frac{5}{3}$

2. Solve the equation $7cosh x + 8sinh x = 1$ for real values of x.

$$
\frac{50^{10}}{2} = 7 \cdot 03h \cdot 1 + 8 \cdot 5 \cdot 10 h \cdot 1 = 1
$$
\n
$$
\frac{7}{2} \cdot \frac{e^{7} + e^{-7}}{2} + 8e^{7} - 8e^{-7} = 1
$$
\n
$$
\frac{15e^{7} - e^{-7}}{15e^{27} - 1 = 2e^{7} \Rightarrow 15e^{27} - 2e^{7} - 1 = 0
$$
\n
$$
\frac{15e^{27} - 1 = 2e^{7} \Rightarrow 15e^{27} - 2e^{7} - 1 = 0}{\text{This is a quadratic in } e^{7} - 15y^{2} - 27 - 1 = 0}
$$
\n
$$
y = e^{7} = \frac{-(-2) \pm \sqrt{(-2)^{2} - 4(15)(-1)}}{2(15)} = \frac{1}{3} \cdot 15 \cdot \frac{1}{5}
$$
\n
$$
\therefore \pi = \log_{e}(\frac{1}{3}) \quad \text{or} \quad \pi = \log_{e}(\frac{1}{3}) = -\log 3
$$

3. If
$$
\sinh^{-1}a + \sinh^{-1}b = \sinh^{-1}x
$$
 then prove that $\underline{x} = a\sqrt{1 + b^2} + b\sqrt{1 + a^2}$
\n $\begin{array}{c} \text{So,} \\ \text{So,} \\ \text{So,} \\ \text{or,} \\ \text{$

57nh (x+3) = 5nh(y)

\n57nh(x cosh3 + cosh x sinh3 = 57nhy —(1)

\nbut sinh x = a, 57nhy = b, 57nhy = x

\n
$$
\cos h^2/3 - sinh^2/3 = 1
$$

\n $\Rightarrow cosh3 = \sqrt{1+sinh^2/3} = \sqrt{1+b^2}$

\nSimilarly, cosh x = $\sqrt{1+ax^2}$

\nSubstituting in (1)

\n $\alpha \sqrt{1+b^2} + b \sqrt{1+ax} = x$

4. Prove that $16 \sinh^5 x = \sinh 5x - 5 \sinh 3x + 10 \sinh x$

$$
50^{10} - LHS = 16 \sinh^5 \pi = 16 (Sinh \pi)^5
$$

= 16 $\left(\frac{e^{\pi} - e^{\pi}}{2}\right)^5$
= $\frac{16}{2^5} (e^{\pi} - e^{\pi})^5$

$$
\begin{aligned}\n\left[\left(a+b \right)^n &= \left(n \left(\circ a^n + n \right) e_1 a^{n-1} b + n \left(\circ a^{n-2} b^2 + \dots + n \right) e_n b^n \right) \right] \\
&= \frac{16}{2^5} \left[\left(e^{\eta} \right)^5 - 5 \left(e^{\eta} \right)^4 \left(e^{\eta} \right) + 10 \left(e^{\eta} \right)^3 \left(e^{\eta} \right)^2 - \left(e^{\eta} \right)^5 \right] \\
&- \left(0 \left(e^{\eta} \right)^2 \left(e^{\eta} \right)^4 + 5 \left(e^{\eta} \right) \left(e^{\eta} \right)^4 - \left(e^{\eta} \right)^5 \right]\n\end{aligned}
$$

$$
= \frac{16}{2^{5}} \left[e^{5\eta} - 5e^{3\eta} + 10e^{\eta} - 10e^{-\eta} + 5e^{3\eta} - e^{5\eta} \right]
$$

$$
2^{5}\left[2^{57}-e^{-57}\right]-5\left(e^{57}-e^{-37}\right)+10\left(e^{7}-e^{7}\right)
$$

= $\left(\frac{e^{57}-e^{-57}}{2}\right)-5\left(\frac{e^{37}-e^{-37}}{2}\right)+10\left(\frac{e^{7}-e^{-7}}{2}\right)$
= $sinh 57-5sinh 37+10sinh 7$

5. Prove that $16\cosh^5 x = \cosh 5x + 5 \cosh 3x + 10 \cosh x$ (*HW*)

6. Prove that
$$
\frac{1}{1 - \frac{1}{1 - \frac{1}{1 - \cosh^2 x}}} = \cosh^2 x
$$

$$
LRS = \frac{1}{1 - \frac{1}{\omega t h^{2} n}} = \frac{1 - tanh^{2}n}{1 - tanh^{2}n} = \frac{cosh^{2}n}{cosh^{2}n}
$$

= $\frac{cosh^{2}n}{cosh^{2}n - sinh^{2}n} = cosh^{2}n = RHS.$

7. If
$$
u = \log \tan \left(\frac{\pi}{4} + \frac{\theta}{2}\right)
$$
, Prove that
\n(i) $\cosh u = \sec \theta$ (ii) $\sinh u = \tan \theta$ (iii) $\tanh u = \sin \theta$ (iv) $\tanh \frac{u}{2} = \tan \frac{\theta}{2}$
\n
\n $\frac{\sec^2 u}{2}$, $\frac{\cos^2 u}{2}$, $\frac{\cos^2 u}{2}$, $\frac{\cos^2 u}{\cos^2 u} = \frac{\sec^2 u}{2}$, $\frac{\cos^2 u}{\cos^2 u} = \frac{\sec^2 u}{\cos^2 u} = \sec^2 u$
\n $\frac{\cos^2 u}{\cos^2 u} = \sec^2 u$, $\frac{\cos^2 u}{\cos^2 u} = \sec^2 u$

$$
\therefore e^{u} = \frac{1+tan\frac{\theta}{2}}{1-tan\frac{\theta}{2}}
$$
 $\therefore e^{u} = \frac{1-tan\frac{\theta}{2}}{1+tan\frac{\theta}{2}}$

$$
\therefore
$$
 Ci) coshu = $e^u + e^{-u}$

$$
= \frac{1}{2} \left(\frac{1 + \tan \frac{\theta}{2}}{1 - \tan \frac{\theta}{2}} + \frac{1 - \tan \frac{\theta}{2}}{1 + \tan \frac{\theta}{2}} \right)
$$

$$
= \frac{1}{2} \left[\frac{2 (1 + \tan^2 \theta)_2}{1 - \tan^2 \frac{\theta}{2}} \right] = \frac{1 + \tan^2 \theta_2}{1 - \tan^2 \theta_2}
$$

$$
Coshu = \frac{1}{cos\theta} = sec\theta.
$$

(i)
$$
sinhu = \sqrt{cosh^{2}u-1} = \sqrt{sec^{2}\theta-1} = \sqrt{tan^{2}\theta}
$$

 $=$ tern θ

(iii)
$$
tanhu = \frac{sinhu}{coshu} = \frac{tan\theta}{sec\theta} = sin\theta
$$

\n(ii) $tanh(\frac{u}{2}) = \frac{sinhu/2}{coshu/2} = \frac{2sinhu/2 coshu/2}{2 cosh^2/2}$
\n
$$
= \frac{sinhu}{1+coshu} = \frac{tan\theta}{1+sec\theta} (cosh\theta)
$$
\n
$$
tanh(\frac{u}{2}) = \frac{sin\theta/cos\theta}{1+(\frac{1}{cos\theta})} = \frac{sin\theta}{cos\theta+1}
$$
\n
$$
= \frac{2sin\theta}{2} \frac{cos\theta}{2} = \frac{sin\theta}{cos\theta} = tan\theta
$$

8. If $\cosh x = \sec \theta$, Prove that **(i)** $x = \log(\sec \theta + \tan \theta)$ **(ii)** $\theta = \frac{\pi}{2}$ $\frac{\pi}{2}$ - 2tan⁻¹(e^{-x}) (iii) $\tanh \frac{x}{2} = \tan \frac{\theta}{2}$

(i)
$$
x = log(sec\theta + tan\theta)
$$
 (ii) $\theta = \frac{\pi}{2} - 2tan^{-1}(e^{-x})$ (iii) $tanh\frac{x}{2} = tan\frac{y}{2}$
\nSoⁿ : $cosh\pi = sec\theta$
\n $\frac{e^{2h} + e^{-2h}}{2} = sec\theta$
\n $e^{2h} + e^{-2h} = 2sec\theta$
\n $e^{2h} - 2sec\theta e^{2h} + 1 = 0$
\n $e^{2h} - 2sec\theta e^{2h} + 1 = 0$

$$
y = e^{\eta} = -(-2sec(\theta) \pm \sqrt{(-2sec(\theta)^2 - 4(1)(1))}
$$

$$
y=c^{2} = \frac{-(-2sec(\theta) \pm \sqrt{-(2sec(\theta)^{2} - 4(1)(1)}}{2c_{1}})
$$
\n
$$
= \frac{2sec(\theta \pm \sqrt{sec^{2}\theta - 4}}{2})
$$
\n
$$
= \frac{sec(\theta \pm \sqrt{tan^{2}\theta})}{2}
$$
\n
$$
e^{2} = sec(\theta \pm tan\theta)
$$
\n
$$
\therefore y = log(sec(\theta \pm tan\theta)) = \pm log(sec(\theta + tan\theta))
$$
\n
$$
log(sec(\theta - tan\theta)) = -log(sec(\theta + tan\theta))
$$
\n
$$
= log(sec(\theta + tan\theta))
$$
\n
$$
= log(sec(\theta + tan\theta))
$$
\n
$$
= \frac{1}{2} - 2tan^{-1}(e^{-x})
$$
\n
$$
= \frac{e^{2} + e^{-x}}{2}
$$

$$
2sec\theta = tan\alpha + cot\alpha
$$
\n
$$
= \frac{sin\alpha}{cos\alpha} + \frac{cos\alpha}{sin\alpha} = \frac{2}{sin2\alpha}
$$
\n
$$
2sec\theta = \frac{2}{sin2\alpha}
$$
\n
$$
cos\theta = sin2\alpha = cos(\frac{\pi}{2} - 2\alpha)
$$
\n
$$
cos\theta = \frac{\pi}{2} - 2\alpha = \frac{\pi}{2} - 2tan^2(\epsilon^2)
$$
\n
$$
cos\theta = tan\left(\frac{\pi}{2}\right) - 2\alpha = \frac{\pi}{2} - 2tan^2(\epsilon^2)
$$

(iii) (P⁺ tanh(
$$
\frac{a}{2}
$$
) = tan($\frac{a}{2}$)
\n
$$
tanh(\frac{a}{2}) = \frac{e^{a/2} - e^{-a/2}}{e^{a/2} + e^{-a/2}} = \frac{e^{a} - 1}{e^{a} + 1}
$$

$$
= \frac{Se(\theta + b \cos \theta - 1)}{Se(\theta + b \sin \theta + 1)}
$$

= $\frac{1 + sin \theta - cos \theta}{1 + sin \theta + cos \theta}$
= $C1 - cos \theta) + sin \theta$

$$
= 2 sin^{2}\theta/2 + 2 sin\theta/2 cos\theta/2
$$

2 cos^{2}\theta/2 + 2 sin\theta/2 cos\theta/2

 $\label{eq:2.1} \mathcal{L}(\mathcal{L}^{\text{max}}_{\mathcal{L}}(\mathcal{L}^{\text{max}}_{\mathcal{L}}(\mathbf{X}^{\text{max}}_{\mathcal{L}}(\mathbf{X}^{\text{max}}_{\mathcal{L}})))$

$$
= 2 sin \frac{\theta}{2} (cos \frac{\theta}{2} + sin \frac{\theta}{2})
$$

$$
2 cos \frac{\theta}{2} (cos \frac{\theta}{2} + sin \frac{\theta}{2})
$$

tanh($\frac{\pi}{2}$) = tan $\frac{\theta}{2}$

SEPARATION OF REAL AND IMAGINARY PARTS

Wednesday, October 27, 2021 2:16 PM

Many a time we are required to separate real and imaginary parts of a given complex function. For this, we have to use identities of circular and hyperbolic functions.

In problem where we are given $\tan(\alpha + i\beta) = x + i y$, we proceed as shown below

Since
$$
\tan(\alpha + i\beta) = x + i y
$$
, we get $\tan(\alpha - i\beta) = x - i y$.
\n
$$
\therefore \tan 2\alpha = \tan[(\alpha + i\beta) + (\alpha - i\beta)]
$$
\n
$$
= \frac{\tan(\alpha + i\beta) + \tan(\alpha - i\beta)}{1 - \tan(\alpha + i\beta) \cdot \tan(\alpha - i\beta)}
$$
\n
$$
= \frac{(x + iy) + (x - iy)}{1 - (x + iy)(x - iy)} = \frac{2x}{1 - x^2 - y^2}
$$
\n
$$
\therefore 1 - x^2 - y^2 = 2x \cot 2\alpha
$$
\n
$$
\therefore x^2 + y^2 + 2x \cot 2\alpha - 1 = 0
$$
\n
$$
= \frac{\tan(\alpha + i\beta) - \tan(\alpha - i\beta)}{1 + \tan(\alpha + i\beta) \tan(\alpha - i\beta)}
$$
\n
$$
= \frac{\tan(\alpha + i\beta) - \tan(\alpha - i\beta)}{1 + \tan(\alpha + i\beta) \tan(\alpha - i\beta)}
$$
\n
$$
= \frac{\tan(\alpha + i\beta) - \tan(\alpha - i\beta)}{1 + \tan(\alpha + i\beta) \tan(\alpha - i\beta)}
$$
\n
$$
= \frac{\tan(\alpha + i\beta) - \tan(\alpha - i\beta)}{1 + \tan(\alpha + i\beta) \tan(\alpha - i\beta)}
$$
\n
$$
= \frac{2i y}{1 + x^2 + y^2}
$$
\n
$$
\therefore \tanh 2\beta = \frac{(x + iy) - (x - iy)}{1 + x^2 + y^2}
$$
\n
$$
= \frac{2i y}{1 + x^2 + y^2} \qquad \text{for } (\alpha + i\beta) = 0
$$
\n
$$
\therefore \sinh(2\beta) = \frac{2i y}{1 + x^2 + y^2} \qquad \text{for } (\alpha + i\beta) = 0
$$
\n
$$
\therefore \sinh(2\beta) = \frac{2i y}{1 + x^2 + y^2} \qquad \text{for } (\alpha + i\beta) = 0
$$

 $\hat{\lambda}$

SOME SOLVED EXAMPLES:

1. Separate into real and imaginary parts
$$
tan^{-1}(e^{i\theta})
$$

\n
$$
\frac{S \circ i^{h}}{h} = \frac{1}{h} (e^{i\theta}) = \frac{1}{h} (e^{i\theta})
$$
\n
$$
L e^{i\theta} = \frac{1}{h} (e^{i\theta}) = \frac{1}{h} (e^{i\theta})
$$
\n
$$
L e^{i\theta} = \frac{1}{h} (e^{i\theta})
$$
\

$$
tan(2x) = \frac{2cos\theta}{1-(cos^{2}\theta + sin^{2}\theta)} = \frac{2cos\theta}{0}
$$

$$
\therefore tan(2x) = 8
$$

\n $\Rightarrow 2x = \frac{\pi}{2}$

Now
$$
\tan[\tan(\pi i y) - (\pi - iy)]
$$

\n
$$
= \tan(\pi i y) - \tan(\pi - iy)
$$
\n(1+tan(\pi +iy) tan(\pi -iy))
\n
$$
= \frac{(\cos\theta + i \sin\theta) - (\cos\theta - i \sin\theta)}{(\cos\theta + i \sin\theta) - (\cos\theta - i \sin\theta)}
$$

$$
fun(2iy) = \frac{2isin\theta}{1+((cos2\theta + sin^2\theta))} = \frac{2isin\theta}{2} = isin\theta
$$

$$
(tan(i\alpha) = itanh\alpha)
$$

$$
\int_{0}^{1} \tanh 2y = \int_{0}^{1} \sin \theta
$$

\n
$$
\therefore \tanh 2y = \sin \theta \implies 2y = \tanh^{-1}(\sin \theta)
$$

\n
$$
\therefore y = \frac{1}{2} \tan \overline{h}^{\prime}(\sin \theta)
$$

$$
\int_{0}^{1} 1 \tan^{-1}(e^{i\theta}) = \frac{\pi}{4} + \frac{1}{2} \tan^{-1}(sin\theta)
$$

2. If
$$
sin(\alpha - i\beta) = x + iy
$$
 then prove that $\frac{x^2}{cosh^2\beta} + \frac{y^2}{sinh^2\beta} = 1$ and $\frac{x^2}{sin^2\alpha} - \frac{y^2}{cos^2\alpha} = 1$
\n $\frac{500}{}$, $\frac{50}{}$, $(\alpha - i\beta) = \pi + i\frac{y}{3}$
\n $\frac{500}{}$, $\frac{50}{}$, $(\alpha - i\beta) = \pi + i\frac{y}{3}$
\n $\frac{500}{}$, $\frac{50}{}$, $\frac{50}{}$, $\frac{50}{}$, $\frac{50}{}$, $\frac{50}{}$
\n $\frac{500}{}$, $\frac{50}{}$, $\frac{50}{}$
\n $\frac{500}{}$, $\frac{50}{}$, $\frac{50}{}$
\n $\frac{500}{}$, $\frac{50}{}$
\n $\frac{$

$$
Cii) \frac{7^{2}}{sin^{2}d} - \frac{y^{2}}{cos^{2}d} = \frac{sin^{2}d cosh^{2}\beta}{sin^{2}d} - \frac{cos^{2}d sinh^{2}\beta}{cos^{2}d}
$$

= cosh^{2}\beta - sinh^{2}\beta = 1.

3. If $cos(x + iy) = cos \alpha + i sin \alpha$, prove that **(i)** $\sin \alpha = \pm \sin^2 x = \pm \sin h^2 y$ **(ii)**

$$
\frac{5019:cos(\eta + iy) = cos\alpha + isin\alpha}{y = cos\alpha + isin\alpha}
$$
\n
$$
\Rightarrow cos\alpha cosh y - isin\alpha sinhy = cos\alpha + isin\alpha
$$
\n
$$
\Rightarrow cos\alpha coshy - isin\alpha sinhy = cos\alpha + isin\alpha
$$
\n
$$
(cosiy = coshy, siniy = isinhy)
$$

comparing Real 4. Imaginary part-5

\ncosx coshy = cosx - sinx sinhy = sinx

\nNow cos²x + sin²x = 1

\n(cos²x cosh²y + sin²x sinh²y = 1

\n(1-sin²y) (1+sinh²y) + sin²x sinh²y = 1

\n1+sinh²y - sin²x - sin²x sinh²y + sin²xsinh²y = 1

\nsinh²y - sin²x - sin²x = 0

\n⇒ sinh²y - sinh²y = 0

\n⇒ sinh²x = sinh²y

\n⇒ sinh²x = 1 sinh²y

\n⇒ sinx = 1 sinh²y

\nfor any
$$
x = -sinx sinh y = 1 sinh^2y
$$

\n(i) The cos2x + cosh2y = 2

\nThus = cos2x + cosh2y

LHS =
$$
cos 2\pi + cos 2\pi
$$

\n= $1-2 sin^{2}\pi + 1+2sinh^{2}4$
\n= $2-2 sin^{2}\pi +2 sinh^{2}4$
\n= $2-2$ sinh² $\pi + 2 sinh^{2}4$
\n= $2-2$ RHS.

4. If $x + i y = \tan(\pi/6 + i \alpha)$, prove that $x^2 + y^2 + 2x/\sqrt{3}$ $\frac{501^{h}}{h}$: $tan(\frac{\pi}{6}+i\alpha) = \pi + i\pi$ -1 $tan(\frac{\pi}{6}-i\alpha) = -1$ $\overline{}$ \mathcal{L}_{max}

$$
\frac{\tan\left(\left(\frac{\pi}{6}+\sin\left(\frac{\pi}{6}+\sin\right)+\left(\frac{\pi}{6}-\sin\right)\right)\right)}{\frac{\pi}{6}-\tan\left(\frac{\pi}{6}+\sin\left(\frac{\pi}{6}-\sin\left(\frac{\pi}{6}-\sin\right)\right)\right)}=\frac{\tan\left(\frac{\pi}{6}+\sin\left(\frac{\pi}{6}-\sin\left(\frac{\pi}{6}-\sin\right)\right)\right)}{\frac{\pi}{6}-\tan\left(\frac{\pi}{6}+\sin\left(\frac{\pi}{6}-\sin\left(\frac{\pi}{6}-\sin\right)\right)\right)}
$$

$$
\therefore \tan(\frac{\pi}{3}) = \frac{2\pi}{1 - \pi^2 - y^2}
$$

$$
\therefore \sqrt{3} = \frac{2\pi}{1 - \pi^2 - y^2} \Rightarrow 1 - \pi^2 - y^2 = \frac{2}{\sqrt{3}} \pi
$$

$$
\Rightarrow \pi^2 + y^2 + \frac{2}{\sqrt{3}} \pi = 1
$$

 $\begin{array}{ccc} \backslash & \delta & \quad \quad \end{array}$

5. If
$$
x + iy = \cot(u + iv)
$$
, show that $\frac{x}{\sin 2u} = -\frac{y}{\sinh 2v} = \frac{c}{\cosh 2v - \cos 2u}$
\n
$$
30^{19} - x + iy = C
$$
 $30^{10} - x + iy = C$ 30^{10}

$$
\sqrt{2\pi}
$$
 = C $\int_{2}^{5i\pi} \frac{sin[(u-iv) + (u+iv)]}{(cos(u+iv-u+iv) - cos(u+iv+u-iv)]}$

 $2 sin A sin B = cos(A-B) - cos (A+B)$

$$
2\% = C \left[\frac{\sin 2u}{\frac{1}{2}[\cos 2u - \cos 2u]} \right]
$$

$$
y = \frac{C \sin 2u}{C \cos 2u}
$$
 (cos(2i1)=cosh 2v)

$$
\frac{u}{\sin 2u} = \frac{C}{C \cos 2u}
$$

Now,

$$
2i y = C \left[C \cos(\pi i y) - C \sin(\pi - iy) \right]
$$

$$
\frac{1}{2} \cos \pi i \sin \pi i \sin \pi i
$$

$$
\frac{1}{2} \cos \pi i \sin \pi i \sin \pi i
$$

6. If $u + i v = \csc \left(\frac{\pi}{4}\right)$ $\frac{\pi}{4}$ + i x), prove that $(u^2 + v^2)^2 = 2(u^2 - v^2)$

S
\nS
\n
$$
\frac{1}{\sin(\frac{\pi}{4} + i\pi)} = u + i\nu
$$
\n
$$
\frac{1}{\sin(\frac{\pi}{4} + i\pi)} = u + i\nu
$$
\n
$$
\frac{1}{\sin(\frac{\pi}{4} + i\pi)} = \frac{1}{u + i\nu} \times \frac{u - i\nu}{u - i\nu}
$$
\n
$$
\frac{u - i\nu}{u^2 + i\nu} = \frac{u}{u^2 + i\nu} - i\frac{u}{u^2 + i\nu}
$$

$$
\sin \frac{\pi}{4} \cos^2 \pi + \cos \frac{\pi}{4} \sin^2 \pi = \frac{u-v}{u^2+v^2} = \frac{u}{u^2+v^2} - i \frac{v}{u^2+v^2}
$$

\n
$$
\left(M_0 w \sin \frac{\pi}{4} = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} \cos^2 \pi = \cos h \pi
$$

\n
$$
\sin^2 \pi = i \sinh \pi
$$

$$
\frac{\cos h\eta}{\sqrt{2}} + i \frac{\sin h\eta}{\sqrt{2}} = \frac{u}{u^{2}+v^{2}} - i \frac{v}{u^{2}+v^{2}}
$$

compleating both sides

$$
\cos h\eta = \frac{\sqrt{2}u}{u^{2}+v^{2}} + \frac{\sin h\eta}{u^{2}+v^{2}} = \frac{-\sqrt{2}v}{u^{2}+v^{2}}
$$

Now
$$
\cosh^{2}n - \sinh^{2}n = 1
$$

\n $\frac{2u^{2}}{(u^{2}+v^{2})^{2}} - \frac{2v^{2}}{(u^{2}+v^{2})^{2}} = 1$
\n $\frac{2(u^{2}+v^{2})}{2(u^{2}-v^{2})} = (u^{2}+v^{2})^{2}$ Hence proved

7. If $x + iy = cos(\alpha + i \beta)$ or if $cos^{-1}(x + iy) = \alpha + i \beta$ express x and y in terms of α and β Hence show that $\cos^2 \alpha$ and $\cosh^2 \beta$ are the roots of the equation $\lambda^2 - (x^2 + y^2 + 1)\lambda + x^2$

$$
\frac{500}{2} \times 119 = cos(441\beta)
$$
\n
$$
= cosh cosh\beta - sinh sinh\beta
$$
\n
$$
(cosh\beta - cosh\beta) \times sinh\beta = isinh\beta
$$
\n
$$
= cosh cosh\beta - isin sinh\beta
$$
\n
$$
= cosh cosh\beta - isin sinh\beta
$$

$$
= cos^{2}\alpha + cosh^{2}\beta
$$

\n
$$
\therefore
$$
 ② is also *proved*
\n
$$
- cos^{2}\alpha
$$
 2 cosh² β one works of given equation.

INVERSE HYPERBOLIC FUNCTIONS

Friday, October 29, 2021 2:28 PM

If $x = \sinh u$ then $u = \sinh^{-1} x$ is called sine hyperbolic inverse of x(where x is real. Similarly we can define $\cosh^{-1} x$, $\tanh^{-1} x$, $\coth^{-1} x$, $\operatorname{sech}^{-1} x$, $\cosh^{-1} x$

Theorem: If x is real.
\n(i) sinh⁻¹x = log (x +
$$
\sqrt{x^2 + 1}
$$
)
\n(ii) cosh⁻¹x = log (x + $\sqrt{x^2 + 1}$)
\n(iii) tanh⁻¹x = $\frac{1}{2}$ log($\frac{1+x}{1-x}$)
\nSo19.1. C.) Let $sinh y = \pi$
\n $\therefore sinh y = \pi$
\n $\therefore e^3 - e^3 = \pi$
\n $\therefore e^3 - e^3 = \pi$
\n $\therefore e^3 - e^3 = 2\pi$
\n $e^3 - e^3 = 2\pi$
\n $e^2 - 1 = 2\pi e^3$
\n $e^2 - 1 = 2\pi e^3$
\n $e^2 - 1 = 2\pi e^3$
\n $e^2 - 1 = 0$
\nThis is a quadrath's in e³
\n $\therefore e^3 = -(-2\pi) \pm \sqrt{(-2\pi)^2 - 4(1)(-1)}$
\n $\therefore e^3 = 2\pi \pm \sqrt{14\pi^2 + 4}$

 $e^{y} = x \pm \sqrt{n^{2}+1}$

$$
3 = 109(7 + \frac{1}{1}\sqrt{2}+1)
$$
\nNow $m = \sqrt{m^{2}+1} < 0$ (x $\sqrt{m^{2}+1}$)
\n
$$
3log(m - \sqrt{m^{2}+1})
$$
 is not defined.
\n
$$
3log(m - \sqrt{m^{2}+1})
$$
\n
$$
3log(m + \sqrt{m^{2}+1})
$$
\n
$$
2log(m + \sqrt{m^{2}+1}))
$$
\n
$$
3log(m + \sqrt{
$$

 $-25 = 109 (M \pm \sqrt{n^2-1})$ N_0w y = $log(x - \sqrt{m^{2}-1})$ - (2) $2^{3} = 2 - \sqrt{2^{2}-1}$ $E_{1} E_{2} = \frac{1}{n - \sqrt{n^{2}-1}} \times \frac{n + \sqrt{n^{2}-1}}{n + \sqrt{n^{2}-1}}$ $=$ $\frac{1}{2}$ $(M3^{2} - (\frac{1}{12^{2}-1})^{2})$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $- y = 109 (1 + \sqrt{121})$ $y = -log(\pi + \sqrt{\pi^{2}-1})$ -(3) $fron (2) 68$ $log (9 - \sqrt{72}-1) = -log (7 + \sqrt{72}-1)$ Substin (i) $y = \pm log(x + \sqrt{x^{2}-1})$ $cosh^2\pi = \pm log(\pi + \sqrt{\pi^{2}-1})$ $m = cosh(\pm log(\pi + \sqrt{14^{2}-1}))$ $\int_{\mathbb{R}} \int_{\mathbb{R}} \mathcal{L} \mathcal{$ $x = cosh (log (x + \sqrt{12}-1))$

Ciii) TeV:
$$
tanh^{1}(x) = log(\pi + \sqrt{\pi^{2}-1})
$$

\n
\n $frac{1}{2}log(\frac{1+x}{1-x})$
\n
\n $frac{1}{2}log(\frac{1+x}{1-x})$

$$
\frac{1+x}{1-x} = \frac{2e^{\frac{3}{2}}}{2e^{\frac{3}{2}}} = e^{2\frac{3}{2}}
$$

$$
\frac{1+x}{2} = \frac{2e^{\frac{3}{2}}}{2} = \frac{e^{2\frac{3}{2}}}{2}
$$

$$
\frac{1+x}{1-x} = \frac{2e^{\frac{3}{2}}}{2} = e^{2\frac{3}{2}}
$$

$$
\frac{1+x}{1-x} = \frac{2e^{\frac{3}{2}}}{2} = e^{2\frac{3}{2}}
$$

SOME SOLVED EXAMPLES:

1. Prove that $\tanh log \sqrt{x} = \frac{x}{x}$ $\frac{x-1}{x+1}$ Hence deduce that tanh $\log \sqrt{5/3}$ + tanh $\log \sqrt{7}$ = 1

method 1 $SovD_{1}$ $tanh (9) = e^3 - e^3$

thenh (3)=

\n
$$
\frac{e^{3}-e^{3}}{e^{3}+e^{3}}
$$
\nthenh (1095a) =

\n
$$
\frac{e^{3}-e^{3}}{e^{3}+e^{3}}
$$
\nthenh (1095a) =

\n
$$
\frac{e^{1095a}-1095a}{e^{1095a}+e^{1095a}}
$$
\n
$$
\frac{1}{2} \log 2 = \frac{1+\alpha}{2} \log \left(\frac{1+a}{1-a} \right)
$$
\n
$$
\frac{3\pi}{2} = \frac{1+\alpha}{1-a}
$$
\n
$$
\frac{3\pi}{2} = \frac{2\alpha}{2} = \alpha
$$
\n
$$
\frac{3\pi}{2} = \frac{2\pi}{2} = \alpha
$$
\n
$$
\frac{3\pi}{2} = \frac{2\pi}{2} = \alpha
$$

$$
tanh (logsn) = \frac{m-1}{n+1}
$$

$$
\therefore
$$
 tanh (log $\frac{5}{3}$) = $\frac{5}{3}$
\n $\frac{5}{3}+1$ = $\frac{2}{8}$
\n $\frac{1}{3}+1$ = $\frac{6}{8}$
\n $\frac{1}{4}+1$ = $\frac{1}{8}$

2. (i) Prove that $cosh^{-1}\sqrt{1 + x^2} =$ **(ii)** Prove that $tanh^{-1}x = sinh^{-1}\frac{x}{\sqrt{2}}$ $\overline{\sqrt{2}}$ **(iii)** Prove that $cosh^{-1}\left(\sqrt{1+x^2}\right) = tanh^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right)$ $\overline{\sqrt{2}}$ **(iv)** Prove that $\cot h^{-1}\left(\frac{x}{a}\right)$ $\left(\frac{x}{a}\right) = \frac{1}{2}$ $rac{1}{2}log\left(\frac{x}{x}\right)$ $\frac{x}{x}$ **(v)** Prove that $sech^{-1}(\sin \theta) = \log cot \frac{\theta}{2}$ $\frac{0}{2}$

40 Prove that
$$
\cot h^{-1}(\frac{1}{a}) = \frac{1}{2} \log(\frac{1+a}{b-a})
$$
 (x. w.) (Proof 15) Similarly to $\tan h^{-1}(\frac{1}{2})$
\n(a) Prove that $\sech^{-1}(\sin \theta) = \log \cot \frac{\theta}{2}$
\n(b) Prove that $\sech^{-1}(\sin \theta) = \log \cot \frac{\theta}{2}$
\n(c) Let $cosh^{-1}(\sqrt{1+a^2}) = 1$
\n \therefore $\sqrt{1+a^2} = cosh^2y$
\n \therefore $\sqrt{2} = cosh^2y - 1$
\n \therefore $\sqrt{2} = sinh^2y$
\n \therefore $\sqrt{2} = sinh^{-1}x$.
\n \therefore $cosh^{-1}(\sqrt{1+a^2}) = sinh^{-1}x$.
\n \therefore $cosh^{-1}(\sqrt{1+a^2}) = sinh^{-1}x$.
\n \therefore $cosh^{-1}(\sqrt{1+a^2}) = sinh^{-1}x$.
\n \therefore $\cosh^{-1}(\sqrt{1+a^2}) = sinh^{-1}x$.
\n \therefore $\cosh^{-1}(\sqrt{1+a^2}) = sinh^{-1}x$
\n \therefore $\cosh^{-1}(\sqrt{1+a^2}) = sinh^{-1}x$
\n \therefore $\cosh^{-1}(\sqrt{1+a^2}) = sinh^{-1}x$
\n \therefore $\frac{\pi}{\sqrt{1-\pi^2}} = \frac{\tanh y}{\sqrt{1-\tanh^2}} = \frac{\tanh y}{\sqrt{\sech y}}$
\n \therefore $\frac{\pi}{\sech y} = sinh y$
\n \therefore $\frac{\pi}{\sech y} = sinh y$

$$
\therefore \tan h'(w) = \sinh\left(\frac{x}{\sqrt{1-x^2}}\right)
$$

\n
$$
\therefore \tan h'(w) = \sinh\left(\frac{x}{\sqrt{1-x^2}}\right)
$$

\n
$$
\int (1+w^2) dx = \tan h\left(\frac{x}{\sqrt{1+x^2}}\right) + w
$$

\n
$$
\int (1+w^2) dx = \cos h\left(\frac{x}{\sqrt{1+x^2}}\right) + w
$$

\n
$$
\int (1+w^2) dx = \cos h\left(\frac{x}{\sqrt{1+x^2}}\right) + w
$$

\n
$$
\int (1+w^2) dx = \cos h\left(\frac{x}{\sqrt{1+x^2}}\right) + w
$$

\n
$$
\int (1+w^2) dx = \cos h\left(\frac{x}{\sqrt{1+x^2}}\right) + w
$$

\n
$$
\int (1+w^2) dx = \cos h\left(\frac{x}{\sqrt{1+x^2}}\right) + w
$$

\n
$$
\int (1+w^2) dx = \cos h\left(\frac{x}{\sqrt{1+x^2}}\right) + w
$$

\n
$$
\int (1+w^2) dx = \cos h\left(\frac{x}{\sqrt{1+x^2}}\right) + w
$$

\n
$$
\int (1+w^2) dx = \cos h\left(\frac{x}{\sqrt{1+x^2}}\right) + w
$$

\n
$$
\int (1+w^2) dx = \cos h\left(\frac{x}{\sqrt{1+x^2}}\right) + w
$$

\n
$$
\int (1+w^2) dx = \cos h\left(\frac{x}{\sqrt{1+x^2}}\right) + w
$$

\n
$$
\int (1+w^2) dx = \cos h\left(\frac{x}{\sqrt{1+x^2}}\right) + w
$$

\n
$$
\int (1+w^2) dx = \cos h\left(\frac{x}{\sqrt{1+x^2}}\right) + w
$$

\n
$$
\int (1+w^2) dx = \cos h\left(\frac{x}{\sqrt{1+x^2}}\right) + w
$$

\n
$$
\int (1+w^2) dx = \cos h\left(\frac{x}{\sqrt{1+x^2}}\right) + w
$$

\n
$$
\int (1+w^2) dx = \cos h\left(\frac{x}{\sqrt{1+x^2}}\right) + w
$$
<

 $\frac{12 \times 1-510^{20}}{57n0} = \frac{12000}{51n0}$ \overline{a} \bigcap

$$
e^{\eta} = \frac{1 + \omega sB}{s_1^n \omega} = \frac{2 \omega s^{20/2}}{2sin\theta/2 \omega s\omega/2}
$$

\n $e^{\eta} = \frac{\omega sB/2}{s_1^n \omega/2} = \omega t \frac{B}{2}$
\n \therefore $sec\sqrt{2} (sin\theta) = log \omega t \frac{B}{2}$

3. Separate into real and imaginary parts $cos^{-1}e^{i\theta}$ or $cos^{-1}($

S
\nS
\nS
\n
$$
2^{10}
$$
 = 0
\n 2^{10} = 0
\n<

$$
1000 \cos 2\theta - \sin 2\theta = 1
$$
\n
$$
\frac{cos^{2}\theta}{cos^{2}\theta} - \frac{sin^{2}\theta}{sin^{2}\theta} = 1
$$
\n
$$
\frac{cos^{2}\theta}{cos^{2}\theta} - \frac{sin^{2}\theta}{sin^{2}\theta} = 1
$$

$$
\frac{1}{1-\sin^{2} \theta} - \frac{\sin^{2} \theta}{\sin^{2} \theta} = 1
$$
\n
$$
\frac{1-\sin^{2} \theta}{1-\sin^{2} \theta} - \frac{5\tan^{2} \theta}{\sin^{2} \theta} = 1
$$
\n
$$
\frac{\sin^{2} n(1-\sin^{2} \theta) - \sin^{2} \theta(1-\sin^{2} \theta)}{\sin^{2} \theta - 1-\sin^{2} \theta}
$$
\n
$$
\frac{\sin^{2} (1-\sin^{2} \theta)}{\sin^{2} \theta - 1-\sin^{2} \theta}
$$
\n
$$
\frac{\sin^{2} (1-\sin^{2} \theta)}{\sin^{2} \theta - 1-\sin^{2} \theta} = 1
$$
\n
$$
\frac{\sin^{2} \theta}{\sin^{2} \theta - 1-\sin^{2} \theta} = 1
$$
\n
$$
\frac{\sin^{2} \theta}{\sin^{2} \theta - 1-\sin^{2} \theta} = 1
$$
\n
$$
\frac{\sin^{2} \theta}{\sin^{2} \theta - 1-\sin^{2} \theta} = 1
$$
\n
$$
\frac{\sin^{2} \theta}{\sin^{2} \theta - 1-\sin^{2} \theta} = 1
$$
\n
$$
\frac{\sin^{2} \theta}{\sin^{2} \theta - 1-\sin^{2} \theta} = 1
$$
\n
$$
\frac{\sin^{2} \theta}{\sin^{2} \theta - 1-\sin^{2} \theta} = 1
$$
\n
$$
\frac{\sin^{2} \theta}{\sin^{2} \theta - 1-\sin^{2} \theta} = \frac{\sin^{2} \theta}{\sin^{2} \theta - 1-\sin^{2} \theta}
$$
\n
$$
\frac{\sin^{2} \theta}{\sin^{2} \theta - 1-\sin^{2} \theta} = \frac{\sin^{2} \theta}{\sin^{2} \theta - 1-\sin^{2} \theta}
$$
\n
$$
\frac{\sin^{2} \theta}{\sin^{2} \theta - 1-\sin^{2} \theta} = \frac{\sin^{2} \theta}{\sin^{2} \theta - 1-\sin^{2} \theta}
$$
\n
$$
\frac{\sin^{2} \theta}{\sin^{2} \theta - 1-\sin^{2} \theta} = \frac{\sin^{2} \theta}{\sin^{2} \theta - 1-\sin^{2} \theta}
$$
\n
$$
\frac{\sin^{2} \theta
$$

4. Separate into real and imaginary parts $sinh^{-1}($

$$
\frac{S_{G1D}}{S_{G2D}}
$$
Let $Sin\hat{h}(Cin) = O(1)\beta$
 $Sin\hat{h}(Cin) = Sin\hat{h}(Cin) + SinS$

$$
= \sinh(\frac{\pi i \beta}{\beta})
$$
\n
$$
= \sinh(\frac{\pi i \beta}{\beta}) + \cosh(\sinh(\frac{\pi}{\beta}))
$$
\n
$$
= \sinh(\frac{\pi}{\beta}) = \cosh(\frac{\pi}{\beta}) + \cosh(\sinh(\frac{\pi}{\beta}))
$$
\n
$$
\cosh(\frac{\pi}{\beta}) = \sinh(\frac{\pi}{\beta})
$$
\n
$$
\therefore \int n = \sinh(\frac{\pi}{\beta}) = \sinh(\frac{\pi}{\beta})
$$
\n
$$
\Rightarrow \sinh(\frac{\pi}{\beta}) = 0 \quad \text{if } \frac{\pi}{\beta} = \frac{\pi}{2}
$$
\n
$$
\Rightarrow \int \sinh(\frac{\pi}{\beta}) = \sin(\frac{\pi}{2}) = 0 \quad \text{if } \frac{\pi}{\beta} = \frac{\pi}{2}
$$
\n
$$
\Rightarrow \int \cosh(\frac{\pi}{\beta}) = \sin(\frac{\pi}{2}) = 0 \quad \text{if } \frac{\pi}{\beta} = \frac{\pi}{2}
$$
\n
$$
\Rightarrow \int \cosh(\frac{\pi}{\beta}) = \sin(\frac{\pi}{\beta}) = 0 \quad \text{if } \frac{\pi}{\beta} = \frac{\pi}{2}
$$
\n
$$
\Rightarrow \int \cosh(\frac{\pi}{\beta}) = \frac{\pi}{2} \quad \text{if } \frac{\pi}{\beta} = \frac{\pi}{2}
$$
\n
$$
\Rightarrow \int \cosh(\frac{\pi}{\beta}) = \frac{\pi}{2} \quad \text{if } \frac{\pi}{\beta} = \frac{\pi}{2}
$$
\n
$$
\Rightarrow \int \cosh(\frac{\pi}{\beta}) = \frac{\pi}{2} \quad \text{if } \frac{\pi}{\beta} = \frac{\pi}{2}
$$
\n
$$
\Rightarrow \int \sinh(\frac{\pi}{\beta}) = \pi + i \quad \text{if } \frac{\pi}{\beta} = \frac{\pi}{2}
$$
\n
$$
\Rightarrow \int \sinh(\frac{\pi}{\beta}) = \pi + i \quad \text{if } \frac{\pi}{\beta} = \frac{\pi}{2}
$$
\n
$$
\Rightarrow \int \sinh(\frac{\pi}{\beta}) = \frac{\pi}{2} \quad \text{if } \frac{\pi}{\beta} = \frac{\pi}{2}
$$
\n
$$
\Rightarrow \int \cosh(\frac{\pi}{\beta}) = \frac{\pi}{2} \quad \text{if } \frac
$$

MODULE-1 Page 55

$$
= \frac{\tan(\pi i y) + \tan(\pi - iy)}{1 - \tan(\pi + iy) + \tan(\pi - iy)} = \frac{\frac{1}{2} + \frac{i}{2}}{1 - (\frac{1}{2} + \frac{i}{2})(\frac{1}{2} - \frac{i}{2})}
$$

$$
= \frac{1}{1 - \left(\frac{1}{4} + \frac{1}{4}\right)} = 2
$$

$$
\therefore 2n = \tan(2i\theta) = \theta \quad n = \frac{1}{2} \tan(2\theta)
$$

Similarly $\tan(2i\theta) = \tan((n+i\theta) - (n-i\theta))$

$$
= \frac{\tan(\pi i y) - \tan(\pi i y)}{1 + \tan(\pi i y) \tan(\pi - i y)}
$$

$$
= \frac{(\frac{1}{2} + \frac{i}{2}) - (\frac{1}{2} - \frac{i}{2})}{1 + (\frac{1}{2} + \frac{i}{2})(\frac{1}{2} - \frac{i}{2})}
$$

$$
i\tanh(2y) = \frac{i}{1+(\frac{1}{4}+\frac{1}{4})} = \frac{2}{3}i
$$
 (tanh(i\eta))
= itanh(\eta)

$$
tanh(2y) = \frac{2}{3}
$$

\n
$$
2y = tanh^{-1}(\frac{2}{3})
$$

\n
$$
2y = \frac{1}{2}log(\frac{1+2/3}{1-2/3})
$$

\n
$$
2y = \frac{1}{4}log(\frac{1+2/3}{1-2/3})
$$

\n
$$
y = \frac{1}{4}log 5
$$

\n
$$
2z = \pi + iy = \frac{1}{2}tan^{-1}(2) + i\frac{1}{4}log 5
$$

6. Show that
$$
\tan^{-1} \left[i \left(\frac{x-a}{x+a} \right) \right] = \frac{1}{2} \log \frac{x}{a}
$$

\n $\frac{\sum a \ln b}{a} \left(i \left(\frac{m-a}{2a} \right) \right) = 0$
\n $\frac{\sum a \ln b}{a} \left(i \left(\frac{m-a}{2a} \right) \right) = \tan 0$
\n $= \frac{e^{i\theta} - e^{-i\theta}}{i^2 \left(e^{i\theta} + e^{-i\theta} \right)}$
\n $= \frac{e^{i\theta} - e^{-i\theta}}{i^2 \left(e^{i\theta} + e^{-i\theta} \right)}$
\n $\frac{m-a}{2a} = \frac{e^{i\theta} - e^{-i\theta}}{i^2 \left(e^{i\theta} + e^{-i\theta} \right)} = \frac{e^{-i\theta} - e^{-i\theta}}{e^{i\theta} + e^{-i\theta}}$
\n $\frac{(m-a)(m+na)}{(m-a)(m+a)} = \frac{e^{-i\theta} - e^{-i\theta}}{e^{-i\theta} + e^{-i\theta}}$
\n $\frac{2m}{2a} = \frac{2e^{-i\theta}}{-2e^{i\theta}}$
\n $\frac{2m}{2a} = \frac{2e^{-i\theta}}{-2e^{i\theta}}$
\n $\therefore -2i\theta = -i\theta \left(\frac{\pi}{a} \right)$
\n $\therefore \theta = \frac{-1}{2i}, i\theta \left(\frac{\pi}{a} \right)$
\n $= \frac{-1}{2i^2}, i\theta \left(\frac{\pi}{a} \right)$

$$
\bigcirc f=\frac{1}{2} \log \left(\frac{1}{\alpha}\right)
$$

LOGARITHMS OF COMPLEX NUMBERS

Monday, October 11, 2021 12:12 PM

Let $z = x + iy$ and also let $x = r \cos \theta$, $y = r \sin \theta$ so that $r = \sqrt{x^2 + y^2}$ and $\theta = \tan^{-1}(\frac{y^2 + y^2}{2})$ Hence, $\log z = \log(r(\cos \theta + i \sin \theta)) = \log(r, e^{i \theta})$ $=\log r + \log e^{i\theta} = \log r + i\theta$ $\therefore \log(x + iy) = \log r + i\theta$ \therefore log(x + iy) = $\frac{1}{2}$ …………….. (1) This is called **principal value** of log (x + iy) $log z = log x + i Q$ **The general value** of log $(x + iy)$ is denoted by Log $(x + iy)$ and is given by $Log Z = logx + i(2n\pi + \theta)$

∴ Log (x + iy) =
$$
2n\pi i + log(x + iy)
$$

\n∴ Log (x + iy) = $2n\pi i + \frac{1}{2}log(x^2 + y^2) + i tan^{-1}\frac{y}{x}$
\n $Log(x + iy) = \frac{1}{2}log(x^2 + y^2) + i(\frac{2n\pi}{2} + tan^{-1}\frac{y}{x})$

Caution: $\theta = \tan^{-1} y/x$ only when x and y are both positive. In any other case θ is to be determined from $x = r \cos \theta$, $y = r \sin \theta$, $-\pi \le \theta \le \pi$.

SOME SOLVED EXAMPLES:

1. Considering the principal value only prove that $\underline{\log}_2(-3) = \frac{1}{3}$ $\frac{108}{1}$

$$
\frac{Sop!}{d\theta_{1}} log_{2}(-3) = \frac{log(1-3)}{log 2}
$$
\n
$$
Now, log(109)(2911) = \frac{log(109)(29192)}{2} + i tan^{1}(\frac{9}{2})
$$
\n
$$
log(-3) = \frac{1}{2}log(9+0) + i tan^{1}(\frac{9}{2})
$$
\n
$$
= \frac{1}{2}log 9 + i(\pi)
$$
\n
$$
log(-3) = log(3 + i\pi)
$$
\n
$$
\therefore log_{2}(-3) = log(3 + i\pi)
$$

 (2)

2. Find the general value of $Log(1 + i) + Log(1 - i)$

$$
\underline{\underline{\hspace{2mm}\text{S01}}^{\,9}}:= \text{Log}(H^{\bullet})^{\bullet} =
$$

 $2.$ Find the general value of $2.50(x + 1)$ and $(x - 1)$

$$
\lim_{\delta \to 0} f(x + i) =
$$
\n
$$
Log(\lambda + i) = \frac{1}{2} log(\lambda^{2} + \lambda^{2}) + i(2n\pi + 6\pi^{2}(\frac{1}{2}))
$$
\n
$$
Log(1+i) = \frac{1}{2} log(2) + i(2n\pi + 6\pi^{2}(1))
$$
\n
$$
= \frac{1}{2} log 2 + i(2n\pi + \frac{\pi}{4})
$$
\n
$$
Log(1-i) = \frac{1}{2} log 2 - i(2n\pi + \frac{\pi}{4})
$$
\n
$$
Log(1+i) + Log(1-i) = \frac{1}{2} log(2 + i(2n\pi + \frac{\pi}{4}))
$$
\n
$$
Log(1+i) + Log(1-i) = \frac{1}{2} log(2 + i(2n\pi + \frac{\pi}{4}))
$$
\n
$$
Log(1+i) + Log(1-i) = \frac{1}{2} log(2 + i(2n\pi + \frac{\pi}{4}))
$$
\n
$$
Log(1+i)^{2} = log(1+i) = log(1+i) = log(1+i) = log(1+i) = 2
$$
\n
$$
Log(2cos\theta + i sin\theta)
$$
\n
$$
= log(2cos\theta) + log(cos\theta + i sin\theta)
$$
\n
$$
Log(2cos\theta) + log(e^{i\theta})
$$
\n
$$
Log(2cos\theta) + log(e^{i\theta})
$$

$$
= \log(2\cos\theta) + \log(e^{i\theta})
$$

$$
= \log(2\cos\theta) + i\theta
$$

11/10/2021 2:14 PM

4. Find the value of $\log \left[\sin(x + iy)\right]$

$$
\frac{S_{01}n}{S_{11}}: S_{11}(m+iy) = S_{11}m \cos iy + \cos x \sin iy
$$

\n
$$
S_{11}y = \cosh y
$$

\n
$$
S_{11}y = \sinh y
$$

\n
$$
S_{11}(m+iy) = S_{11}m \coshy + i(\cos x) \sinh y
$$

\n
$$
\log \left[\sin(m+iy) \right] = \log \left[\sin m \cosh y + i(\cos x) \sinh y \right]
$$

$$
log (a+ib) = \frac{1}{2}log (a^{2}+b^{2}) + i ton^{1}(\frac{b}{a})
$$

\n $= \frac{1}{2}log [sin^{2}n cosh^{2}y + cos^{2}n sinh^{2}y]$
\n $+ i tan^{1} (\frac{cosn sinhy}{sinn coshy})$

$$
Sin^{2}MCO5h^{2}Y + CO5^{2}M Shh^{2}Y
$$
\n
$$
= (1-C05^{2}M)CO5h^{2}Y + CO5^{2}M(C05h^{2}Y - 1)
$$
\n
$$
= (05h^{2}Y - CO5^{2}MCO5h^{2}Y + CO5^{2}MCO5h^{2}Y - CO5^{2}M
$$
\n
$$
= CO5h^{2}Y - CO5^{2}M
$$
\n
$$
Sub in O
$$
\n
$$
log(Sin(M+iy)) = \frac{1}{2}log(C05h^{2}Y - CO5^{2}M) + itan^{1}(Colmtonhy)
$$

5. Show that
$$
\tan\left[\text{i}\log\left(\frac{a-ib}{a+ib}\right)\right] = \frac{2ab}{a^2-b^2}
$$

\n $\left[\frac{\sum b^2}{a^2} - \log\left(a+b\right)\right] = \frac{1}{2} \log\left(a^2+b^2\right) + \left(-a\sqrt{2}\left(\frac{b}{a}\right)\right)$
\n $\left[\frac{\log\left(a-b\right)}{\log\left(a-b\right)}\right] = \frac{1}{2} \log\left(a^2+b^2\right) - \left(-a\sqrt{2}\left(\frac{b}{a}\right)\right)$

$$
\begin{pmatrix}\n a-ib \\
 \overline{a+ib} \\
 \overline{b+ib} \\
 \overline{b+ib} \\
 \overline{b+ib} \\
 \overline{b+ib} \\
 \overline{c+ib} \\
 \over
$$

$$
\therefore i \log \left(\frac{a - ib}{a + ib} \right) = 2 \tan^{-1} \left(\frac{b}{a} \right)
$$

$$
\therefore \tan \left[i \log \left(\frac{a - ib}{a + ib} \right) \right] = \tan \left(2 \tan^{-1} \left(\frac{b}{a} \right) \right)
$$

$$
let tan1(\frac{b}{a}) = 0
$$

\n
$$
= \frac{b}{a} = tan\theta
$$

\n
$$
= \frac{2(b/a)}{1 - tan^{2}\theta}
$$

\n
$$
= \frac{2(b/a)}{1 - tan^{2}\theta}
$$

\n
$$
= \frac{2(b/a)}{1 - (b/a)^{2}} = \frac{2ab}{a^{2} - b^{2}}
$$

6. Prove that $\cos\left[i\log\left(\frac{a}{a}\right)\right]$ a a^2-b^2 $rac{a}{a^2}$

7. Find the principal value of
$$
(1+i)^{1-i}
$$

\n $\frac{36^{n}}{2} = (1+i)^{1-i}$
\n $\frac{36^{n}}{2} = (1+i)^{100} \text{ b}^{2} \text{h} \text{ s}^{2} \text{ d}^{8} \text{ s}$
\n $\frac{100}{2} = (-i)^{100} \left(\frac{1}{2} \text{log}(\frac{1}{2} + i)^{2} + i \text{tan}(\frac{1}{2})\right)$
\n $= (-i)^{1} \left(\frac{1}{2} \text{log}(\frac{1}{2} + i)^{2} + i \text{tan}(\frac{1}{2})\right)$
\n $\left(\frac{1}{2} \text{log}(\frac{1}{2} + i)^{2} + i \text{tan}(\frac{1}{2})\right)$
\n $\left(\frac{1}{2} \text{log}(\frac{1}{2} + i)^{2} + i \text{tan}(\frac{1}{2})\right)$
\n $\left(\frac{1}{2} \text{log}(\frac{1}{2} + i)^{2}\right)$
\n $= \frac{1}{2} \text{log}(\frac{1}{2} + i)^{2} = e^{\alpha i} \cdot e^{\frac{i}{2}i}$
\n $= e^{\alpha i} \text{log}(\frac{1}{2} + i)^{2} \text{log}(\frac{1}{2} + i)^{2}$
\n $= e^{\alpha i} \text{log}(\frac{1}{2} + i)^{2}$
\n $\frac{1}{2} \text{log}(\frac{1}{2} + i)^{2}$
\

\n
$$
\text{real} \left(\frac{1}{2} \log 2 + \frac{\pi}{4} \right)
$$
\n

\n\n $\text{real} \left(\frac{1}{2} \log 2 + \frac{\pi}{4} \right)$ \n

\n\n $\text{Im} \left(\frac{\pi}{4} - \frac{1}{2} \log 2 \right)$ \n

\n\n $\text{Im} \left(\frac{\pi}{4} - \frac{1}{2} \log 2 \right)$ \n

8. Prove that the general value of $(1 + i \tan \alpha)^{-i}$ is e^2

$$
\frac{S_{0}P_{0}}{I_{0}P_{0}} = \frac{1}{\frac{1}{2}S_{0}P_{0}} \cdot \frac{1}{\frac{1}{2}S_{0}} \cdot \
$$

$$
Z = e^{(2M\pi + x)} (cos (log (cos x) + i sin (log (cos x))
$$

9. Considering only principal value, if $(1 + i \tan \alpha)^{1+i \tan \beta}$ is real, prove that its value is $(\sec \alpha)^s$

 201^{h} .

$$
log Z = (1 + i \tan \beta) log(1 + i \tan \alpha)
$$
\n
$$
= (1 + i \tan \beta) \left[\frac{1}{2} log(1 + \tan^{2} \alpha) + i \tan^{1}(\frac{\tan \alpha}{1}) \right]
$$
\n
$$
= (1 + i \tan \beta) [log(se(\alpha) + i \alpha)]
$$
\n
$$
log Z = [log(se(\alpha) - \alpha \tan \beta] + i(\alpha + \tan \beta log(se(\alpha))]
$$
\n
$$
= \pi + i y
$$

where
$$
m = log(secx) - x tan \beta
$$
]
\n $y = x + tan \beta log(secx)$ } (1)

$$
2 = e^{\gamma + i y} = e^{\gamma} \cdot e^{iy} = e^{\gamma} [cos y + isiny]
$$

$$
Z = e^{M} (cos y + i e^{M} sin y -
$$
\n
$$
Sine Z is x e^{a} = e^{M} sin y = 0 \t(e^{M} \neq 0)
$$
\n
$$
\Rightarrow y = 0
$$
\n
$$
P = 0
$$

$$
z) \propto +
$$
 $tan \beta \log (se(x)) = 0$

 A 1so $Z = e^{M}$ (osy + 1e^m siny $z = e^{\alpha}$ ($cos(0) = e^{\alpha}$ $Z = e^{\log (sec \times) - x tan \beta}$ $=$ $\begin{array}{cc} \text{log}(\text{sec}) & -\text{2} \text{tan}\beta \\ \text{2} & \text{2} \end{array}$ $\int_{\cos x + 1}^{\cos x} e^{x} dx$ $\sqrt{2}$

MODULE-1 Page 64

$$
\sum = (3e \omega) e^{-x \tan \beta} \qquad (3)
$$

$$
\text{from } ② = 0 \quad \alpha + \text{tan}18 \log(sec \alpha) = 0
$$
\n
$$
= 0 \quad -\alpha = \text{tan}18 \log(sec \alpha)
$$
\n
$$
= 0 \quad -\alpha \text{tan}18 = \text{tan}218 \log(sec \alpha)
$$
\n
$$
= 0 \quad -\alpha \text{tan}18 = \text{tan}218 \log(sec \alpha)
$$
\n
$$
= 0 \quad -\alpha \text{tan}18 = \text{tan}218 \log(sec \alpha)
$$
\n
$$
= 0 \quad \text{tan}218 = \text{tan}218
$$
\n
$$
\text{Substituting } \text{in } 3
$$
\n
$$
= 0 \quad \text{sech}(sec \alpha) = \text{sech}(sec \alpha)
$$
\n
$$
= (sec \alpha)^{1 + \text{tan}218} = (sec \alpha)^{8} = 0
$$

10. If
$$
\frac{(a+ib)^{x+iy}}{(a-ib)^{x+iy}} = a+i\beta
$$
, find α and β
\n
$$
\sum a^{y} = a^{y} \left(\alpha x + i\beta \right) \log \alpha
$$
 So $\log(2a+ib) = (m-iy) \log(a-ib)$
\n
$$
= (m+iy) \left(\frac{1}{2} \log (c^{2}+b^{2}) + i \log \left(\frac{b}{2} \right) \right)
$$

\n
$$
= (m-iy) \left(\frac{1}{2} \log (c^{2}+b^{2}) - i \log \left(\frac{b}{2} \right) \right)
$$

\n
$$
\frac{1}{2} \log \left(\frac{c^{2}+b^{2}}{2} \right) - i \log \left(\frac{b}{2} \right)
$$

11. If $i^{\alpha+i\beta} = \alpha + i\beta$ $\left(\text{or } i^{i^{1+\cdots+\infty}} = \alpha + i\beta\right)$, prove that $\alpha^2 + \beta^2 = e^{-(4n+1)\pi\beta}$ Where n is any positive integer $x + i \beta = i^{x + i}$ 200

 \mathcal{L}^{max}

$$
\frac{20^{n}}{10} \div \alpha + i\beta = i^{4}i^{3}
$$
\nTo king general value of log

\n
$$
\left[log(\alpha + i\beta) - (\alpha + i\beta) log(i) \right]
$$
\n
$$
= (\alpha + i\beta) log(\frac{1}{e})
$$
\n
$$
= (\alpha + i\beta) log(\frac{1}{e})
$$
\n
$$
= (\alpha + i\beta) { ((2n\pi + \frac{\pi}{2}))}
$$
\n
$$
log(\alpha + i\beta) = -\beta (2n\pi + \frac{\pi}{2}) + i (2n\pi + \frac{\pi}{2}) \times
$$
\n
$$
= \frac{-\beta (2n\pi + \frac{\pi}{2})}{e} \times \frac{(-2n\pi + \frac{\pi}{2})}{e}
$$
\n
$$
= \frac{-\beta (2n\pi + \frac{\pi}{2})}{e} \times \frac{(-2n\pi + \frac{\pi}{2})}{e}
$$
\n
$$
= \frac{-\beta (2n\pi + \frac{\pi}{2})}{e} \times \frac{(-2n\pi + \frac{\pi}{2})}{e} \times \frac{(-2n\pi + \frac{\pi}{2})}{e}
$$
\n
$$
\therefore \alpha = e^{\frac{-\beta (2n\pi + \frac{\pi}{2})}{e} \cdot \frac{(\alpha + \frac{\pi}{2}) \cdot \alpha}{e}}
$$
\n
$$
= \frac{-\beta (2n\pi + \frac{\pi}{2})}{e} \times \frac{-(2n\pi + \frac{\pi}{2})}{e} \times \frac{(-2n\pi + \frac{\pi}{2})}{e} \times \frac{(-2n\
$$

12. Prove that $\log tan\left(\frac{\pi}{4}\right)$ $\frac{\pi}{4}+i\frac{x}{2}$ $\left(\frac{x}{2}\right) = i \tan^{-1}(\sinh x).$

$$
\frac{\text{Soi}^{n}}{1 - \log \tan(\frac{\pi}{4} + i\frac{\pi}{2})}
$$
\n
$$
= \log \left(\frac{\tan(\frac{\pi}{4}) + \tan(i\frac{\pi}{2})}{1 - \tan(i\frac{\pi}{2})}\right)
$$

MODULE-1 Page 66

$$
= \log \left[\frac{\tan(\frac{\pi}{4}) + \tan(\frac{\pi}{2})}{1 - \tan(\frac{\pi}{4}) \tan(\frac{\pi}{2})}\right]
$$

 $\ddot{}$

$$
= \left\{\n \begin{array}{c}\n 09 \\
 \end{array}\n \left(\n \begin{array}{c}\n \frac{1 + \tan(i\frac{\pi}{i})}{1 - \tan(i\frac{\pi}{i})}\n \end{array}\n \right)
$$

 $tan(i\alpha) = itonhd$

$$
= \log \left\lfloor \frac{|+i \tanh(\frac{\pi}{2})|}{1-i \tanh(\frac{\pi}{2})} \right\rfloor
$$

$$
= \log\left(1+i' \tanh\left(\frac{\alpha}{2}\right)\right)-\log\left(1-i' \tanh\left(\frac{\alpha}{2}\right)\right)
$$

$$
=\frac{1}{2}log(1+tanh^{2}(\frac{\pi}{i}))+\dot{,}tan^{1}(tanh(\frac{\pi}{i}))
$$

$$
-\frac{1}{2}log(1+tanh^{2}(\frac{\pi}{i}))+\dot{,}tan^{1}(tanh(\frac{\pi}{i}))
$$

$$
= 2 i \tan^{-1} (\tanh(\frac{\pi}{2}))
$$

\n
$$
2 \tan^{-1} \alpha = \tan^{-1} (\frac{2 \alpha}{1 - \alpha 2})
$$

\n
$$
= i \tan^{-1} (\frac{2 \tanh(\frac{\pi}{2})}{1 - \tanh^2(\frac{\pi}{2})})
$$

 ι

$$
= i \tan^{-1} (sinh \theta)
$$

 $=$ pus

