
DE MOIVRE’S THEOREM:

Statement : For any rational number n the value or one of the values of                                      

1.    If               then

    
 

 
                                                      

    i.e.         
 

 
             

2.                                  

    For,                                         

                                                                .                                                                              

                                                                    

Note : Note carefully that ,    

    (1)                                 

        But                    
 

 
          

 

 
      

                             
 

 
            

 

 
            

    (2)                                     

SOME SOLVED EXAMPLES:

1.     Simplify 
                              

                               
                                              

2.   

Prove that      
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3.  

Find the modulus and the principal value of the argument of  
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4.     Simplify  
            

            
            

 
     

5.     If   
 

  
       

 

  
           

 is the conjugate of z prove that                
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Q.5    (ii)           
   
 
 
       

   
 
 
               

6.     If    are the roots of the equation          , prove that                     , Hence, deduce 
that         
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7.     If    are the roots of the equation        
   
     , Prove that        and 

          (HW)

8.     If                                               prove that 
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9.     If   
 

 
           

 

 
            

 

 
          prove that

       (i)         
 

   
                                   (ii)       
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10.     If cos                                 , 

Prove that                                     . 
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Prove that                                     . 

11.  

If       
 

  
       

 

  
    prove that (i)                                (ii)                                   
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12.    If                                                         then show that the     

general value of  is 
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13.     By using De Moivre’s Theorem show that                      
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ROOTS OF ALGEBRAIC EQUATIONS:

De Moivre’s theorem can be used to find the roots of an algebraic equation.

General values of                  and                 where k is an integer.

To solve the equation of the type                  , we apply De Moivre’s theorem

                    
 

 
  
    

 

 
        

 

 
 

This shows that      
 

 
       

 

 
   is one of the n roots of                       

The other roots are obtain by expressing the number in the general form

                               
 

 
  

         
     

 
             

     

 
      

    Taking   k = 0, 1, 2,…………...,(n – 1). We get n roots of the equation.

Note: (i)     Complex roots always occur in conjugate pair if coefficients of different powers of x     including constant 
terms in the equation are real.

          (ii)     Continued products mean products of all the roots of the equation.

SOME SOLVED EXAMPLES:

1.     If  is a cube root of unity, prove that           

Applications of De-Moivre’s Theorem
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2. Find all the values of          
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3.     Find the cube roots of                . 
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4.     Find the continued product of all the value of              

5.     Find all the values of  
 

 
   

  
   

 
   

   

and show that their continued product is 1.
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5.     Find all the values of  
 

 
   

  
 

 
   

  

and show that their continued product is 1.

6. SOLVE:                               
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7. SOLVE:                        

8. SOLVE:                          
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9.     Find the roots common to                  .       
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10.     If                              
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11.     If one root of                              find all other roots.    
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12.     If            are the roots of        , find them & show that                              .
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13.     Solve the equation           and show that  the  real part of all the roots is     
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14.     If  is a 7th root of unity, prove that                                   if n is a multiple of 

7 and is equal  to zero  otherwise.
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15.     Prove that             
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CIRCULAR FUNCTIONS: 

    From Euler’s formula, we have                  and                     

                   
        

 
       ,          

         

  
       

If        is complex number, then       
        

 
       ,          

         

  
       

These are called circular function of complex numbers.

HYPERBOLIC FUNCTIONS:

If x is real or complex, then sine hyperbolic of x is denoted by       and is given as,       
       

 
          and 

Cosine hyperbolic of x is denoted by       and is given as,        
       

 
      

From above expressions, other hyperbolic functions can also be obtained as  

        
     

     
      

       

       
                       

 

     
     

 

       
      ,                   

 

      
      

 

       
       ,  and     

       
 

     
      

       

       
      

TABLE OF VALUES OF HYPERBOLIC FUNCTION:

From the definitions of sinhx, cos x, tanhx, we can obtain the following values of hyperbolic function.

x   0  

       0  

      1  

       0 1

Note:    since                                                    

            

RELATION BETWEEN CIRCULAR AND HYPERBOLIC FUNCTIONS :

(i)                                                            

(ii)                         

(iii)                                                            

   

FORMULAE ON HYPERBOLIC FUNCTIONS :

CIRCULAR FUNCTIONS HYPERBOLIC FUNCTIONS

1                                 

2                             

3                             

4                               

5                             

6                             

7                                 

8                

      
      

         
       

                  

      
       

          
        

9                   

                        

                     

                         

HYPERBOLIC FUNCTIONS
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9                   

                        

                     

       
         

         
       

                     

                         

                      

       
           

          
        

10
       

      

         
                 

       

           
           

11                                          

12                                        

13
       

            

         
                     

              

          
               

14                                                             

15                                                             

16
          

             

                
                          

               

                 
                

17
          

             

            
                        

                

             
                 

18
               

   

 
          

   

 
                       

   

 
         

   

 
     

19
               

   

 
          

   

 
                       

   

 
         

   

 
     

20          

      
   

 
          

   

 
      

                 
   

 
         

   

 
     

21          

       
   

 
          

   

 
      

                 
   

 
         

   

 
     

22                                                           

23                                                           

24                                                           

25                                                              

PERIOD OF HYPERBOLIC FUNTIONS:

                                              

                                     

                                   

    Hence        is a periodic function of period    

Similarly we can prove that       and       are periodic functions of period    and     .

DIFFERENTIATION AND INTRGRATION :

    (i)  If         

                 
      

 
            

  
  

  
   

 

  
   

      

 
        

      

 
                

        

If          
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If          
  

  
        

   

(ii)   If              

               
      

 
              

             
  

  
   

 

  
   

      

 
        

      

 
            

       

If          
  

  
        

       

(iii)  If            

              
     

     
             

                   
  

  
   

                          

      
                     

 

      
            

          

If          
  

  
             

   

Hence, we get the following three results 

                       
 

 
,                     

 

 
,                        
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SOME SOLVED EXAMPLES:

1.     If        
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2.     Solve the equation                  for real values of  .  

             

3.     If                         then prove that         
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4.     Prove that                                 
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5.     Prove that                                     

6.     Prove that 
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7.     If          
 

 
  

 

 
  , Prove that 

    (i)                      (ii)               (iii)                      (iv)         
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8.     If              Prove that    

        (i)                         (ii)    
 

 
                  (iii)            
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                -                    
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Many a time we are required to separate real and imaginary parts of a given complex function. 

For this, we have to use identities of circular and hyperbolic functions. 

In problem where we are given                 we proceed as shown below

Since                 we get                 

                          

             
                   

                     
                

             
             

              
            

  

       
       

                                       

                      

Further,                            

              
                   

                     
                     

                  
             

              
            

    

       
           

                 
  

       
         

                                                               

SOME SOLVED EXAMPLES:

1.     Separate into real and imaginary parts                       

SEPARATION OF REAL AND IMAGINARY PARTS
Wednesday, October 27, 2021 2:16 PM
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2.     If                  then prove that  
  

      
      

  

      
        and    

  

     
     

  

     
         

 .     If                                       

(i)                                  (ii)                   
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4.     If                                         
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5.    If                             
 

     
       

 

      
      

 

            
           .
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6.     If              
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7.     If                  or if                   express   and   in terms of   and   

         Hence show that       and        are the roots of the equation                      
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If        then           is called sine hyperbolic inverse of x, where x is real.

Similarly we can define                                            

Theorem:  If x is real.

(i)                         
        

                   

(ii)                          
        

(iii)             
 

 
     

   

   
    

INVERSE HYPERBOLIC FUNCTIONS
Friday, October 29, 2021 2:28 PM
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SOME SOLVED EXAMPLES:

1.     Prove that          
    

   

   
     Hence deduce that tanh log    

    
+ tanh log  

   
= 1     
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2.     (i)    Prove that            
       

                        

(ii)    Prove that               
 

     
                        

(iii)    Prove that             
       

         
 

     
                    

(iv)     Prove that         
 

 
   

 

 
     

   

   
    

(v)    Prove that                    
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(iv)     Prove that         
 

 
   

 

 
     

   

   
    

(v)    Prove that                    
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3.     Separate into real and imaginary parts                                      
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4.     Separate into real and imaginary parts                  
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5.    If      
 

 
        prove that   
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6.     Show that       
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6.     Show that         
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Let       and also let                so that         
        

and              

Hence,    log                                  

                         

                          

                
 

 
                  

 

 
                …………….. (1)

This is called principal value of log (x + iy)

The general value of log (x + iy) is denoted by Log (x + iy) and is given by 

                                  

                           
 

 
                  

 

 
 

             
 

 
                       

 

 
          …………….. (2)

Caution:                only when x and y are both positive. 

                  In any other case  is to be determined from                             

SOME SOLVED EXAMPLES:

1.     Considering the principal value only prove that          
        

    
      

2.     Find the general value of                         

LOGARITHMS OF COMPLEX NUMBERS
Monday, October 11, 2021 12:12 PM
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2.     Find the general value of                         

3.     Prove that                             

11/10/2021 2:14 PM 

4.     Find the value of log                 
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5.     Show that           
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6.     Prove that           
    

    
      

     

     
     

7.     Find the principal value of           
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8.     Prove that the general value of              is                                         

9.     Considering only principal value, if                 is real, prove that its value is           
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10.     If 
          

          
                  find                            

11.     If                    
      

        prove that                  Where n is any positive integer
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12.     Prove that          
 

 
   

 

 
                 .

   MODULE-1 Page 66    



   MODULE-1 Page 67    



   MODULE-1 Page 68    


