

# Syllabus First Year B. Tech (Common to All)

From Academic Year 2023-24 (SVU-KJSCE 2.0)

Presented and Approved in the 9<sup>th</sup> Meeting of the Academic Council of Somaiya Vidyavihar University held on 5<sup>th</sup> April, 2023



It is notified for information of all concerned that the Boards of Studies of various departments at their meeting held on following dates, and the subsequent meeting of the Academic Council held on 05 April 2023 amended the syllabus of FY B Tech (Common to all disciplines) and same be brought in to force from Academic Year 2023-24.

# • Dates of Approvals and Amendments:

- 1. 1<sup>st</sup> Meeting of the Board of Studies in Robotics and Artificial Intelligence held on 20/03/2023
- 2. 8<sup>th</sup> Meeting of the Board of Studies in Information Technology (for IT and AI-DS programs) held on 21/03/2023
- 3. 8<sup>th</sup> Meeting of the Board of Studies in Mechanical Engineering held on 23/03/2023
- 4. 8<sup>th</sup> Meeting of the Board of Studies in Electronics and Telecommunications Engineering held on 23/03/2023
- 5. 8<sup>th</sup> Meeting of the Board of Studies in Computer Engineering held on 24/03/2023
- 6. 8<sup>th</sup> Meeting of the Board of Studies in Electronics and Computer Engineering held on 24/03/2023
- FoET dated --/--/2023 (presented by the Dean, Faculty of Technology by mail dated 31 March 2023)
- 8. 9<sup>th</sup> Meeting of the Academic Council held on 05/04/2023



# • Preamble

With Academic Year 2023-24, we bring the second revision of the curriculum of our UG programs in Engineering and Technology. K J Somaiya College of Engineering, as an autonomous college earlier and now as a part of the Somaiya Vidyavihar University has always tried to provide an environment for the students to learn fundamentals, share knowledge, get the latest trends in Technology and create facts from fictions. Acknowledging the penetration of Computer Technology and Data Science into all sectors of Engineering, we are launching three new UG programs namely Artificial Intelligence & Data Science, Computer & Communication Engineering and Robotics & Artificial Intelligence from Academic Year 2023-24.

Even before the NEP-2020 guidelines, the approach of KJSCE towards curriculum designing has always been towards the 360-degree development of students focusing on both, academic as well as extracurricular skills. This has given us an advantage over other institutions in implementation of NEP-2020 guidelines as now we are in a process of fine-tuning our curricular framework with the NEP, which is a smooth transition for us rather than making an abrupt change in the academic policies of our college. The features like skill and ability enhancement courses, value added courses, and foundation courses etc. are introduced in the curriculum in a systematic manner.

In the First Year, students are encouraged to select from a wide variety of exposure courses from music to mountaineering, from badminton to broadcasting and from film-making to football. Keeping with the current needs, every student will learn programming skills using python programming in the first semester while they will learn C-programming, which forms the backbone of embedded systems, in the second semester. The contents and tutorials of Mathematics are deigned to imbibe the real feel of mathematical concepts and methods in engineering applications. Apart from the strong foundations of basic and engineering sciences, courses like AutoCAD will develop design skills and courses like presentation and communication skills will develop proficiency of formal and public communication in students. The basic workshop practice course is redesigned and new branch-specific trades are introduced in the second semester.

Perhaps, the most important part of engineering education has been the project work, which trains students not only to become technically sound but also to build-up his/her social and societal connect. Keeping this in mind, we have introduced a new course called the Project-Based Learning from first year itself to orient students to an interdisciplinary environment. The experiential learning students get through this course will be more important than the technical learning they get through traditional courses. In this course, students are given a freedom to select their project topic on solutions of some real-life problems from engineering, healthcare, environment and sustainability, energy-efficiency, agriculture etc. Through this course, they will learn life-skills such as team-building, design thinking, engineering ethics, project management, methodologies, product development and so on. The course is completely hands-on type covering Arduino-based applications development and introduces robotics and automation techniques through simple toys and kits. I am sure students would be excited to learn this revised curriculum SVU-R2023!

Dr. Shubha Pandit, Principal, K J Somaiya College of Engineering



- Salient features and changes with respect to SVU R-2020:
- 1. Introduced Project-based learning course
- 2. Python Programming is shifted to semester I and C Programming in semester II
- 3. Communication Skills is modified to Presentation and Communication Skills with more stress on contemporary methods of communication instead of focusing only on language skills
- 4. Chemistry syllabus is modified by about 50% to include foundations of new courses added in higher semesters.
- 5. Basic Workshop Practice course is modified to add discipline-specific jobs/hands-on skills in the second semester.
- 6. Term work, Oral/Practical Exam is replaced by Lab/Tutorial CA (continuous Assessment)
- 7. Relative grading system will be implemented on progressive basis
- 8. End semester examination will be conducted for 50 marks
- 9. Term work defaulter policy (semester penalty) removed

### • Aspects of NEP-2020 guidelines covered during First Year:

- Inclusion of credit-based courses and projects in the areas of community engagement and service and environmental education to include areas such as climate change, pollution, waste management, sustainable development etc. covered through PBL course
- Ability Enhancement Compulsory course covered through Presentation and Communication Skills
- Skill Enhancement Compulsory Course covered through Computer Programming, Engineering Drawing, Workshop Practice
- Value Added Course A variety of courses offered under "Exposure courses" such as Yoga, Sports, Indian Classical Music etc.





# • Program Outcomes (PO) – Common to all Disciplines

- **PO1 Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2 Problem Analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3 Design/Development Of Solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4** Conduct Investigations Of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5** Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6** The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, cultural, environmental, health, safety and legal issues relevant to the professional engineering practice; understanding the need of sustainable development
- **PO7** Multidisciplinary Competence: Recognize/study/analyze/provide solutions to real-life problems of multidisciplinary nature from diverse fields
- **PO8** Ethics: Apply ethical principles and commit to professional ethics, responsibilities, and norms of the engineering practice.
- **PO9** Individual and Teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10 Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11 Project Management and Finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12 Life-Long Learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.



# • Acronyms use:

| 1. | Acronyms for      | category of | courses and | svllabus  | template |
|----|-------------------|-------------|-------------|-----------|----------|
|    | 1101 011 1110 101 | category or | courses and | by man ab | vempiace |

| Acronym | Description                   | Acronym | Description              |
|---------|-------------------------------|---------|--------------------------|
| BS      | Basic Science Courses         | CA      | Continuous Assessment    |
|         |                               |         | (Theory Course)          |
| ES      | Engineering Science           | ESE     | End Semester Exam        |
| HS      | Humanities, Social Sciences   | IA      | Internal Assessment      |
|         | and Management Courses        |         |                          |
| PC      | Professional Core Courses     | LAB/TUT | Continuous Assessment of |
|         |                               | CA      | Laboratory/Tutorial      |
| PE      | Professional Elective courses | TH      | Theory                   |
| OET     | Open Elective – Technical     | TUT     | Tutorial                 |
| OEHM    | Open Elective – Humanities    | ISE     | In- Semester Examination |
|         | and Management                |         |                          |
| LC      | Laboratory Courses            | CO      | Course Outcome           |
| PR      | Project                       | PO      | Program Outcome          |
| EX      | Exposure Course               | PSO     | Program specific Outcome |

# 2. Type of Course

| Acronym | Description                             |  |  |  |  |  |
|---------|-----------------------------------------|--|--|--|--|--|
| С       | Core Course                             |  |  |  |  |  |
| Ε       | Elective Course                         |  |  |  |  |  |
| 0       | Open Elective Technical                 |  |  |  |  |  |
| H       | Open Elective - Humanities/ Management/ |  |  |  |  |  |
|         | SWAYAM-NPTEL/ Coursera                  |  |  |  |  |  |
| Р       | Project                                 |  |  |  |  |  |
| L       | Laboratory Course                       |  |  |  |  |  |
| Т       | Tutorial                                |  |  |  |  |  |
| X       | Exposure course                         |  |  |  |  |  |
| W       | Workshop                                |  |  |  |  |  |
| V       | Values Based Course                     |  |  |  |  |  |

# 3. Eight Digit Course code e.g. 216U06C101

| Acronym              | Description                       |
|----------------------|-----------------------------------|
| Serially as per code |                                   |
| 2                    | SVU R-2023 (Second revision)      |
| 16                   | College code                      |
| U                    | Alphabet code for type of program |
| 05/06                | Program/Department code           |
| С                    | Type of course                    |
| 1                    | Semester number (Semester I)      |
| 01                   | Course serial number              |



# **Teaching, Credit and Evaluation Scheme**

# SEMESTER I Course-Group C

### **Teaching and Credit Scheme**

| Course Code | Name of the Course                                                  | Teaching<br>Scheme<br>TH-PR-<br>TUT | Total<br>(hrs.) | Credit<br>Scheme<br>TH-PR-<br>TUT | Total<br>Credits | Course<br>Category |
|-------------|---------------------------------------------------------------------|-------------------------------------|-----------------|-----------------------------------|------------------|--------------------|
| 216U06C101  | Applied Mathematics – I                                             | 3 - 0 - 1                           | 4               | 3 - 0 - 1                         | 4                | BS                 |
| 216U06C103  | Engineering Chemistry                                               | 3 - 0 - 0                           | 3               | 3 - 0 - 0                         | 3                | BS                 |
| 216U06C105  | Engineering Drawing                                                 | 2 - 0 - 1                           | 3               | 2 - 0 - 1                         | 3                | ES                 |
| 216U06C106  | Elements of Electrical and<br>Electronics Engineering               | 3-0-0                               | 3               | 3-0-0                             | 3                | ES                 |
| 216U06L101  | Python Programming                                                  | 0 - 2 - 2                           | 4               | 0 - 1 - 2                         | 3                | ES                 |
| 216U06L103  | Engineering Chemistry<br>Laboratory                                 | 0 - 2 - 0                           | 2               | 0 - 1 - 0                         | 1                | BS                 |
| 216U06L105  | Engineering Drawing Laboratory                                      | 0 - 2 - 0                           | 2               | 0 - 1 - 0                         | 1                | ES                 |
| 216U06L106  | Elements of Electrical and<br>Electronics Engineering<br>Laboratory | 0 - 2 - 0                           | 2               | 0-1-0                             | 1                | ES                 |
| 216U06P101  | Project-Based Learning                                              | 0 - 0 - 2                           | 2               |                                   |                  | PR                 |
| 216U06W101  | Basic Workshop Practice – I                                         | 0 - 2 - 0                           | 2               | 0 - 2 - 0                         | 2                | ES                 |
| 216U06X101  | Exposure Course                                                     | 0 - 2 - 0                           | 2               |                                   |                  | EX                 |
|             | Total                                                               |                                     | 29              |                                   | 21               |                    |

### **Evaluation Scheme\***

| <b>Course Code</b> | Name of the Course             | LAB/ | C   | A   | ESE | Total |
|--------------------|--------------------------------|------|-----|-----|-----|-------|
|                    |                                | TUT  | IA  | ISE |     |       |
|                    |                                | CA#  |     |     |     |       |
| 216U06C101         | Applied Mathematics – I        | 25   | 20  | 30  | 50  | 125   |
| 216U06C103         | Engineering Chemistry          |      | 20  | 30  | 50  | 100   |
| 216U06C105         | Engineering Drawing            |      | 20  | 30  | 50  | 100   |
| 216U06C106         | Elements of Electrical and     |      | 20  | 30  | 50  | 100   |
|                    | Electronics Engineering        |      |     |     |     |       |
| 216U06L101         | Python Programming             | 75   |     |     |     | 075   |
| 216U06L103         | Engineering Chemistry          | 50   |     |     |     | 050   |
|                    | Laboratory                     |      |     |     |     |       |
| 216U06L105         | Engineering Drawing Laboratory | 50   |     |     |     | 050   |
| 216U06L106         | Elements of Electrical and     | 50   |     |     |     | 050   |
|                    | Electronics Engineering        |      |     |     |     |       |
|                    | Laboratory                     |      |     |     |     |       |
| 216U06P101         | Project-Based Learning         |      |     |     |     |       |
| 216U06W101         | Basic Workshop Practice – I    | 50   |     |     |     | 050   |
| 216U06X101         | Exposure Course                |      |     |     |     |       |
|                    | Total                          | 300  | 080 | 120 | 200 | 700   |

\*Starting from A.Y.2023-24, relative grading system will be implemented for FY B Tech on progressive basis #Lab/Tut CA will comprise of a variety of components such as quizzes, onscreen exam, viva-voce, journal, GDs etc. throughout the semester. Details will be shared by course teachers at the beginning of every semester



# SEMESTER I Course-Group P

### **Teaching and Credit Scheme**

| Course Code | Name of the Course             | Teaching  | Total  | Credit    | Total   | Course   |
|-------------|--------------------------------|-----------|--------|-----------|---------|----------|
|             |                                | Scheme    | (hrs.) | Scheme    | Credits | Category |
|             |                                | ТН-РК-    |        | ТН-РК-    |         |          |
|             |                                | TUT       |        | TUT       |         |          |
| 216U06C101  | Applied Mathematics – I        | 3 - 0 - 1 | 4      | 3 - 0 - 1 | 4       | BS       |
| 216U06C102  | Engineering Physics            | 3 - 0 - 0 | 3      | 3 - 0 - 0 | 3       | BS       |
| 216U06C104  | Engineering Mechanics          | 3 - 0 - 0 | 3      | 3 - 0 - 0 | 3       | ES       |
| 216U06L101  | Python Programming             | 0 - 2 - 2 | 4      | 0 - 1 - 2 | 3       | ES       |
| 216U06L102  | Engineering Physics Laboratory | 0 - 2 - 0 | 2      | 0 - 1 - 0 | 1       | BS       |
| 216U06L104  | Engineering Mechanics          | 0 - 2 - 0 | 2      | 0 - 1 - 0 | 1       | ES       |
|             | Laboratory                     |           |        |           |         |          |
| 216U06P101  | Project-Based Learning         | 0 - 0 - 2 | 2      |           |         | PR       |
| 216U06T101  | Presentation and Communication | 0 - 0 - 2 | 2      | 0 - 0 - 2 | 2       | HS       |
|             | Skills                         |           |        |           |         |          |
| 216U06W101  | Basic Workshop Practice – I    | 0 - 2 - 0 | 2      | 0 - 2 - 0 | 2       | ES       |
| 216U06X101  | Exposure Course                | 0 - 2 - 0 | 2      |           |         | EX       |
|             | Total                          |           | 26     |           | 19      |          |

#### **Evaluation Scheme\***

| Course Code | Name of the Course             | Lab/ | C   | A   | ESE | Total |
|-------------|--------------------------------|------|-----|-----|-----|-------|
|             |                                | TUT  | IA  | ISE |     |       |
|             |                                | CA#  |     |     |     |       |
| 216U06C101  | Applied Mathematics – I        | 25   | 20  | 30  | 50  | 125   |
| 216U06C102  | Engineering Physics            |      | 20  | 30  | 50  | 100   |
| 216U06C104  | Engineering Mechanics          |      | 20  | 30  | 50  | 100   |
| 216U06L101  | Python Programming             | 75   |     |     |     | 075   |
| 216U06L102  | Engineering Physics Laboratory | 50   |     |     |     | 050   |
| 216U06L104  | Engineering Mechanics          | 50   |     |     |     | 050   |
|             | Laboratory                     |      |     |     |     |       |
| 216U06P101  | Project-Based Learning         |      |     |     |     |       |
| 216U06T101  | Presentation and Communication | 50   |     |     |     | 050   |
|             | Skills                         |      |     |     |     |       |
| 216U06W101  | Basic Workshop Practice – I    | 50   |     |     |     | 050   |
| 216U06X101  | Exposure Course                |      |     |     |     |       |
|             | Total                          | 300  | 060 | 090 | 150 | 600   |

\*Starting from A.Y.2023-24, relative grading system will be implemented for FY B Tech on progressive basis #Lab/Tut CA will comprise of a variety of components such as quizzes, onscreen exam, viva-voce, journal, GDs etc. throughout the semester. Details will be shared by course teachers at the beginning of every semester



# SEMESTER II Course-Group C

#### **Teaching and Credit Scheme**

| Course Code | Name of the Course             | Teaching         | Total           | Credit           | Total<br>Creadite | Course   |
|-------------|--------------------------------|------------------|-----------------|------------------|-------------------|----------|
|             |                                | Scheme<br>TH-PR- | ( <b>nrs.</b> ) | Scheme<br>TH-PR- | Creatis           | Category |
|             |                                | TUT              |                 | TUT              |                   |          |
| 216U06C201  | Applied Mathematics – II       | 3 - 0 - 1        | 4               | 3 - 0 - 1        | 4                 | BS       |
| 216U06C102  | Engineering Physics            | 3 - 0 - 0        | 3               | 3 - 0 - 0        | 3                 | BS       |
| 216U06C104  | Engineering Mechanics          | 3 - 0 - 0        | 3               | 3 - 0 - 0        | 3                 | ES       |
|             | Engineering Physics Laboratory | 0 - 2 - 0        | 2               | 0 - 1 - 0        | 1                 | BS       |
| 216U06L102  |                                |                  |                 |                  |                   |          |
| 216U06L104  | Engineering Mechanics          | 0 - 2 - 0        | 2               | 0 - 1 - 0        | 1                 | ES       |
|             | Laboratory                     |                  |                 |                  |                   |          |
| 216U06L201  | Programming in C               | 0 - 2 - 2        | 4               | 0 - 1 - 2        | 3                 | ES       |
| 216U06P101  | Project-Based Learning         | 0 - 2 - 0        | 2               | 0 - 2 - 0        | 2                 | PR       |
| 216U06T101  | Presentation and Communication | 0 - 0 - 2        | 2               | 0 - 0 - 2        | 2                 | HS       |
|             | Skills                         |                  |                 |                  |                   |          |
| 216U06W201  | Basic Workshop Practice – II   | 0 - 2 - 0        | 2               | 0 - 2 - 0        | 2                 | ES       |
| 216U06X101  | Exposure Course                | 0 - 2 - 0        | 2               |                  |                   | EX       |
|             | Total                          |                  | 26              |                  | 21                |          |

### **Evaluation Scheme\***

| Course Code | Name of the Course             | Lab/ | C   | Α   | ESE | Total |
|-------------|--------------------------------|------|-----|-----|-----|-------|
|             |                                | TUT  | IA  | ISE |     |       |
|             |                                | CA#  |     |     |     |       |
| 216U06C201  | Applied Mathematics – II       | 25   | 20  | 30  | 50  | 125   |
| 216U06C102  | Engineering Physics            |      | 20  | 30  | 50  | 100   |
| 216U06C104  | Engineering Mechanics          |      | 20  | 30  | 50  | 100   |
| 216U06L102  | Engineering Physics Laboratory | 50   |     |     |     | 050   |
| 216U06L104  | Engineering Mechanics          | 50   |     |     |     | 050   |
|             | Laboratory                     |      |     |     |     |       |
| 216U06L201  | Programming in C               | 75   |     |     |     | 075   |
| 216U06P101  | Project-Based Learning         | 50   |     |     |     | 050   |
| 216U06T101  | Presentation and Communication | 50   |     |     |     | 050   |
|             | Skills                         |      |     |     |     |       |
| 216U06W201  | Basic Workshop Practice – II   | 50   |     |     |     | 050   |
| 216U06X101  | Exposure Course                |      |     |     |     |       |
|             | Total                          | 350  | 060 | 090 | 150 | 650   |

\*Starting from A.Y.2023-24, relative grading system will be implemented for FY B Tech on progressive basis #Lab/Tut CA will comprise of a variety of components such as quizzes, onscreen exam, viva-voce, journal, GDs etc. throughout the semester. Details will be shared by course teachers at the beginning of every semester

Note: As per college internship policy, it is mandatory for every student to complete 10 weeks of internship spanning over the four years of B. Tech Programme over and above the academic credits. Students can take up internships in community services / socially relevant projects (optional and limited to 4 weeks) and in the technical domain (minimum 6 weeks or more). Students will be awarded an internship completion certificate along with their graduation.



# SEMESTER II Course-Group P

#### **Teaching and Credit Scheme**

| <b>Course Code</b> | Name of the Course             | Teaching  | Total  | Credit    | Total   | Course   |
|--------------------|--------------------------------|-----------|--------|-----------|---------|----------|
|                    |                                | Scheme    | (hrs.) | Scheme    | Credits | Category |
|                    |                                | TH-PR-    |        | TH-PR-    |         |          |
|                    |                                | TUT       |        | TUT       |         |          |
| 216U06C201         | Applied Mathematics – II       | 3 - 0 - 1 | 4      | 3 - 0 - 1 | 4       | BS       |
| 216U06C103         | Engineering Chemistry          | 3 - 0 - 0 | 3      | 3 - 0 - 0 | 3       | BS       |
| 216U06C105         | Engineering Drawing            | 2 - 0 - 1 | 3      | 2 - 0 - 1 | 3       | ES       |
| 216U06C106         | Elements of Electrical and     | 3 - 0 - 0 | 3      | 3 - 0 - 0 | 3       | ES       |
|                    | Electronics Engineering        |           |        |           |         |          |
| 216U06L103         | Engineering Chemistry          | 0 - 2 - 0 | 2      | 0 - 1 - 0 | 1       | BS       |
|                    | Laboratory                     |           |        |           |         |          |
| 216U06L105         | Engineering Drawing Laboratory | 0 - 2 - 0 | 2      | 0 - 1 - 0 | 1       | ES       |
| 216U06L106         | Elements of Electrical and     | 0 - 2 - 0 | 2      | 0 - 1 - 0 | 1       | ES       |
|                    | Electronics Engineering        |           |        |           |         |          |
|                    | Laboratory                     |           |        |           |         |          |
| 216U06L201         | Programming in C               | 0 - 2 - 2 | 4      | 0 - 1 - 2 | 3       | ES       |
| 216U06P101         | Project-Based Learning         | 0 - 2 - 0 | 2      | 0 - 2 - 0 | 2       | PR       |
| 216U06W201         | Basic Workshop Practice – II   | 0 - 2 - 0 | 2      | 0 - 2 - 0 | 2       | ES       |
| 216U06X101         | Exposure Course                | 0 - 2 - 0 | 2      |           |         | EX       |
|                    | Total                          |           | 29     |           | 23      |          |

#### **Evaluation Scheme\***

| Course Code | Name of the Course             | Lab/ | C   | A   | ESE | Total |
|-------------|--------------------------------|------|-----|-----|-----|-------|
|             |                                | TUT  | IA  | ISE |     |       |
|             |                                | CA#  |     |     |     |       |
| 216U06C201  | Applied Mathematics – II       | 25   | 20  | 30  | 50  | 125   |
| 216U06C103  | Engineering Chemistry          |      | 20  | 30  | 50  | 100   |
| 216U06C105  | Engineering Drawing            |      | 20  | 30  | 50  | 100   |
| 216U06C106  | Elements of Electrical and     |      | 20  | 30  | 50  | 100   |
|             | Electronics Engineering        |      |     |     |     |       |
| 216U06L103  | Engineering Chemistry          | 50   |     |     |     | 050   |
|             | Laboratory                     |      |     |     |     |       |
| 216U06L105  | Engineering Drawing Laboratory | 50   |     |     |     | 050   |
| 216U06L106  | Elements of Electrical and     | 50   |     |     |     | 050   |
|             | Electronics Engineering        |      |     |     |     |       |
|             | Laboratory                     |      |     |     |     |       |
| 216U06L201  | Programming in C               | 75   |     |     |     | 075   |
| 216U06P101  | Project-Based Learning         | 50   |     |     |     | 050   |
| 216U06W201  | Basic Workshop Practice – II   | 50   |     |     |     | 050   |
| 216U06X101  | Exposure Course                |      |     |     |     |       |
|             | Total                          | 350  | 080 | 120 | 200 | 750   |

\*Starting from A.Y.2023-24, relative grading system will be implemented for FY B Tech on progressive basis #Lab/Tut CA will comprise of a variety of components such as quizzes, onscreen exam, viva-voce, journal, GDs etc. throughout the semester. Details will be shared by course teachers at the beginning of every semester

Note: As per college internship policy, it is mandatory for every student to complete 10 weeks of internship spanning over the four years of B. Tech Programme over and above the academic credits. Students can take up internships in community services / socially relevant projects (optional and limited to 4 weeks) and in the technical domain (minimum 6 weeks or more). Students will be awarded an internship completion certificate along with their graduation.



125

# **Course-wise Detailed Syllabus**

| Course Code              | Name of the Course |                         |      |     |       |  |  |
|--------------------------|--------------------|-------------------------|------|-----|-------|--|--|
| 216U06C101               |                    | Applied Mathematics - I |      |     |       |  |  |
|                          |                    |                         |      |     |       |  |  |
| <b>Teaching Scheme</b>   | TH                 | P                       |      | TUT | Total |  |  |
| (Hrs./Week)              | 03                 |                         |      | 01  | 04    |  |  |
| Credits Assigned         | 03                 |                         |      | 01  | 04    |  |  |
|                          |                    |                         |      |     |       |  |  |
| <b>Evaluation Scheme</b> | Marks              |                         |      |     |       |  |  |
|                          | LAB/TUT            | CA                      | (TH) | ESE | Total |  |  |
|                          | CA                 | CA IA ISE               |      |     |       |  |  |

#### **Course pre-requisites:**

Basics of Matrices, Inverse and Adjoint, Differentiation Techniques, Basics of Complex numbers, Basics of Differential Equations

30

50

20

#### **Course Objectives:**

The objective of the course is to impart knowledge of De-Moivre's theorem, hyperbolic functions and logarithm of complex numbers. The course introduces the concept of partial differentiation and its applications to find extreme values of a function and Jacobian. The concept of rank of matrix, solving system of linear equations is explained in detail. The course communicates the methods of solving linear differential equations.

#### **Course Outcomes (CO):**

At the end of successful completion of the course the student will be able to

25

- **CO1.** Solve problems involving different forms and properties of complex numbers, hyperbolic functions and logarithm of complex numbers.
- **CO2.** Apply the concept of rank of a matrix and numerical methods to solve system of linear equations.
- **CO3.** Find partial derivatives of multivariable functions, apply the concept of partial differentiation to find maxima and minima of 2-variable functions
- CO4. Apply Euler's theorem to prove results related to Homogeneous functions.

**CO5.** Identify and solve different types of ordinary differential equations using various methods.



| Module   | Unit Contents                                                     |                                                                                        | No of     | CO  |
|----------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------|-----|
| NO.<br>1 | No.                                                               | or Numbers Hyperbolic Eurotions and Legenithm of Complex                               | Hrs<br>12 | CO1 |
| I        | Numb                                                              | ex Numbers, Hyperbolic Functions and Logarithm of Complex                              | 12        | COI |
|          | 1 1                                                               | Statement of De Moivre's theorem and related examples                                  |           |     |
|          | 1.1                                                               | Powers and roots of complex numbers                                                    |           |     |
|          | 1.2                                                               | Circular functions and hyperbolic functions of complex number                          |           |     |
|          | 1.5                                                               | Inverse circular and inverse hyperbolic functions                                      |           |     |
|          | 1.4                                                               | Logarithm of complex numbers                                                           |           |     |
|          | 1.5                                                               | Separation of real and imaginary parts of a function                                   |           |     |
|          | 1.0                                                               | #Self-learning topics: Expansion of sinna cosna in terms of sine                       |           |     |
|          |                                                                   | and cosine of multiples of angle $\theta$ and expansion of sinn $\theta$ cosn $\theta$ |           |     |
|          |                                                                   | in powers of $sin\theta$ . $cos\theta$                                                 |           |     |
|          |                                                                   |                                                                                        | I         |     |
| 2        | Rank                                                              | of Matrix and System of Equations                                                      | 08        | CO2 |
|          | 2.1                                                               | Types of matrices: Hermitian, Skew-Hermitian, Unitary and                              |           |     |
|          | -                                                                 | Orthogonal matrix                                                                      |           |     |
|          | 2.2                                                               | Rank of a matrix using row echelon forms, reduction to normal                          |           |     |
|          |                                                                   | form                                                                                   |           |     |
|          | 2.3                                                               | System of homogeneous and non-homogeneous equations, their                             |           |     |
|          |                                                                   | consistency and solutions                                                              |           |     |
|          | 2.4 Linearly dependent and independent vectors                    |                                                                                        |           |     |
|          | 2.5 Solution of system of linear algebraic equations by (a) Gauss |                                                                                        |           |     |
|          | Seidal method (b) Jacobi iteration method                         |                                                                                        |           |     |
|          | #Self-learning topics: Symmetric, Skew-symmetric matrices and     |                                                                                        |           |     |
|          |                                                                   | properties, Properties of adjoint and inverse of a matrix                              |           |     |
| •        |                                                                   |                                                                                        |           | ~~~ |
| 3        | Partia                                                            | Differentiation and Application                                                        | 09        | CO3 |
|          | 3.1                                                               | Functions of several variables, Partial derivatives of first and                       |           |     |
|          | 2.2                                                               | higher order (definition using limits and simple problems)                             |           |     |
|          | 3.2                                                               | Differentiation of composite functions                                                 |           |     |
|          | 3.3                                                               | Maxima and minima of a function of two independent variables                           |           |     |
|          | 3.4                                                               | (simple problems)                                                                      |           |     |
|          |                                                                   | (simple problems)                                                                      |           |     |
| 4        | Homo                                                              | range rungtions                                                                        | 04        | CO4 |
| 4        | <u>1101110</u><br><u>1</u> 1                                      | Euler's theorem on homogeneous functions with two and three                            | 04        | 04  |
|          | 4.1                                                               | independent variables (statement only) and problems                                    |           |     |
|          | 42                                                                | Deductions(Corollaries) from Euler's theorem (statements only)                         |           |     |
|          |                                                                   | and problems                                                                           |           |     |
|          |                                                                   |                                                                                        | I         |     |
| 5        | Linear                                                            | Differential Equations of First and Higher Order                                       | 12        | CO5 |
|          | 5.1                                                               | Differential Equation of first order and first degree- Exact                           |           |     |
|          |                                                                   | differential equations, Equations reducible to exact equations by                      |           |     |
|          | integrating factors.                                              |                                                                                        |           |     |
|          | 5.2 Linear differential equations (Review), Equation reducible to |                                                                                        |           |     |
|          |                                                                   | linear form. Applications of Differential Equation of first order                      |           |     |
|          |                                                                   | and first degree                                                                       |           |     |
|          | 5.3                                                               | Linear Differential Equation with constant coefficients:                               |           |     |
|          |                                                                   | Complimentary function, particular integrals of differential                           |           |     |
|          |                                                                   | equation of the type $f(D)y = X$ , where X is $e^{ax}$ , sin (ax +                     |           |     |
|          |                                                                   | b), $\cos(ax + b)$ , $x^n$ , $e^{ax}V$                                                 |           |     |



| 5.4 | Method of variation of parameters                                                                                                               |    |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
|     | #Self-learning topic: Bernoulli's equation. Equation reducible to<br>Bernoulli's equation. Cauchy's homogeneous linear Differential<br>Equation |    |  |
|     | Total                                                                                                                                           | 45 |  |

#Students should prepare all self-learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in Tutorials.

# References

| Sr. | Name/s of Author/s | Title of Book                  | Publisher            | Edition/                   |
|-----|--------------------|--------------------------------|----------------------|----------------------------|
| No  |                    |                                |                      | Year                       |
| 1   | B. S. Grewal       | Higher Engineering Mathematics | Khanna Publications, | 43 <sup>rd</sup> /e,       |
|     |                    |                                | India                | 2014                       |
| 2   | Shanti Narayan     | A text book of Matrices        | S. Chand, India      | $10^{\text{th}}/\text{e},$ |
|     |                    |                                |                      | 2004                       |
| 3   | Erwin Kreyszig     | Advanced Engineering           | Wiley Eastern        | $10^{\text{th}}/\text{e}$  |
|     |                    | Mathematics                    | Limited, India       | 2015                       |
| 4   | Ramana B.V.        | Higher Engineering Mathematics | Tata Mcgraw Hill     | 34 <sup>th</sup> /e,       |
|     |                    |                                | New Delhi, India     | 2019                       |
|     |                    |                                |                      | Reprint                    |
| 5   | Glyn James         | Advanced Modern Engineering    | Pearson Publication  | $4^{\text{th}}/\text{e},$  |
|     | ·                  | Mathematic                     | India                | 2010                       |



| Course Code              | Name of the Course  |    |         |    |       |  |
|--------------------------|---------------------|----|---------|----|-------|--|
| 216U06C102               | Engineering Physics |    |         |    |       |  |
|                          |                     |    |         |    |       |  |
| <b>Teaching Scheme</b>   | TH P TUT Total      |    |         |    |       |  |
|                          | 03                  |    |         |    | 03    |  |
| Credits Assigned         | 03                  |    |         |    | 03    |  |
|                          |                     |    |         |    |       |  |
| <b>Evaluation Scheme</b> |                     |    | Mark    | S  |       |  |
|                          | LAB/TUT             | CA | CA (TH) |    | Total |  |
|                          | CA                  | IA | ISE     |    |       |  |
|                          |                     | 20 | 30      | 50 | 100   |  |

**Physics:** Metric units and conversions, basic concepts and laws of optics, electricity and magnetism, basic mechanical and thermal properties of solids, electrical properties of conductors and semiconductors, particle properties of radiation, quantum theory prior to de' Broglie hypothesis **Mathematics:** A good grasp of differential equations and integration, vectors and vector operations, trigonometric operations and identities, logarithms, coordinate system (Cartesian), complex numbers, probability, basic matrix operations

#### **Course Objectives:**

- This Physics course is designed to establish strong foundations of Engineering Sciences by using a problem-solving approach to learn fundamental physical concepts and mathematical foundations of a variety of real-life applications.
- The course covers areas of both, pure and applied Physics such as laser and fibre optics, electromagnetism, plasma physics, semiconductors, dielectrics, liquid crystals, and Physics of sensors used in IoT applications.
- The course is also aimed to convey the importance of quantum mechanics for futuristic engineering and computing applications.

# **Course Outcomes (CO):**

#### At the end of successful completion of the course the student will be able to

- CO1. Explain a variety of optical phenomena using concepts of wave optics and photonics
- **CO2.** Analyse basic physical properties of technologically important engineering materials
- CO3. Identify the scope of quantum mechanics in engineering and computing applications
- **CO4.** Solve engineering problems using mathematical foundations of electromagnetism and plasma physics
- **CO5.** Correlate physics of different types of sensors used in IoT applications



| Module | Unit Contents                                                                                                                   |                                                                        | Hrs/ | CO  |
|--------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------|-----|
| No.    | No.                                                                                                                             |                                                                        | week |     |
| 1      | Photo                                                                                                                           | nics                                                                   | 09   | CO1 |
|        | 1.1                                                                                                                             | Principles of Lasers: Laser properties and parameters, Interaction of  |      |     |
|        |                                                                                                                                 | radiation with matter, Rate equations and Einstein's coefficients,     |      |     |
|        |                                                                                                                                 | population inversion, pumping, metastable states, optical resonator,   |      |     |
|        |                                                                                                                                 | threshold condition                                                    |      |     |
|        | 1.2                                                                                                                             | Optical Fibres: Total internal reflection, numerical aperture, type of |      |     |
|        |                                                                                                                                 | optical fibres, modes of propagation, V-number, attenuation and        |      |     |
|        |                                                                                                                                 | dispersion, bit rate, optical window                                   |      |     |
| •      |                                                                                                                                 |                                                                        | 10   | ~~  |
| 2      | Engine                                                                                                                          | eering Materials                                                       | 10   | CO2 |
|        | 2.1                                                                                                                             | Physics of Semiconductors: Carrier concentration in intrinsic and      |      |     |
|        |                                                                                                                                 | extrinsic semiconductors, charge carrier transport and current         |      |     |
|        |                                                                                                                                 | mechanisms, Fermi-Dirac statistics, temperature dependence of          |      |     |
|        | <b>2.2</b> Dielectrics: Dielectric parameters, types of polarization and their                                                  |                                                                        |      |     |
|        | 2.2 Dielectrics: Dielectric parameters, types of polarization and their avpressions frequency dependence of dielectric constant |                                                                        |      |     |
|        | expressions, frequency dependence of dielectric constant                                                                        |                                                                        |      |     |
|        | 2.3                                                                                                                             | Liquid crystals: Liquid crystal phases, properties, application in     |      |     |
|        |                                                                                                                                 | displays                                                               |      |     |
| 2      | Introd                                                                                                                          | ustary Quantum Machanica                                               | 10   | CO3 |
| 3      | 3 1                                                                                                                             | De' Broglie hypothesis and illustrative examples                       | 10   | 005 |
|        | 3.1                                                                                                                             | De Broglie hypothesis and illustrative examples                        |      |     |
|        | 3.2                                                                                                                             | Wave function time dependent Schrodinger equation (1-                  |      |     |
|        | 5.5                                                                                                                             | dimensional) time-independent form illustrative application to         |      |     |
|        |                                                                                                                                 | particle in a box problem                                              |      |     |
|        | 3.4                                                                                                                             | Basics of quantum computing – qubits quantum logic gates               |      |     |
|        |                                                                                                                                 | quantum circuits, proposed applications                                |      |     |
|        |                                                                                                                                 |                                                                        |      |     |
| 4      | Electro                                                                                                                         | omagnetism and Introduction to Plasma Physics                          | 09   | CO4 |
|        | 4.1                                                                                                                             | Gradient, divergence, curl, physical interpretations, fundamental      |      |     |
|        |                                                                                                                                 | theorems of vector calculus                                            |      |     |
|        | 4.2                                                                                                                             | basic laws of electricity and magnetism in differential and integral   |      |     |
|        |                                                                                                                                 | forms                                                                  |      |     |
|        | 4.3                                                                                                                             | Electromagnetic wave equation (1-dimensional), speed of light          |      |     |
|        | 4.4                                                                                                                             | Plasmas and their characterization, Basic plasma concepts, Plasma      |      |     |
|        |                                                                                                                                 | parameters, waves in plasmas                                           |      |     |
|        |                                                                                                                                 |                                                                        |      |     |
| 5      | Physic                                                                                                                          | ics of Sensors for IoT Applications                                    |      | CO5 |
|        | 5.1                                                                                                                             | Review of different types of sensors used in IoT                       |      |     |
|        | 5.2                                                                                                                             | Electro-optic Sensors: IR sensors, Image sensors                       |      |     |
|        | 5.3                                                                                                                             | Mechanical Sensors: Pressure and Motion Sensors                        |      |     |
|        | 5.4                                                                                                                             | Environmental Sensors: Temperature and Humidity Sensors                |      |     |
|        |                                                                                                                                 | Total                                                                  | 45   |     |



# References

| Sr.<br>No | Name/s of Author/s                                    | Title of Book                                        | Publisher             | Edition/<br>Year             |
|-----------|-------------------------------------------------------|------------------------------------------------------|-----------------------|------------------------------|
| 1         | M N Avadhanulu,<br>P G Kshirsagar,<br>TVS Arun Murthy | A Textbook of Engineering<br>Physics                 | S Chand               | 11 <sup>th</sup> /e,<br>2018 |
| 2         | Gaur, Gupta                                           | Engineering Physics                                  | Dhanpat Rai,<br>India | 8/e, 2018                    |
| 3         | Ajoy Ghatak                                           | Optics                                               | McGraw Hill<br>India  | 6th<br>Edition,<br>2017      |
| 4         | Arthur Beiser                                         | Concepts of Modern<br>Physics                        | McGraw Hill<br>India  | 7th<br>Edition,<br>2017      |
| 5         | David Griffiths                                       | Introduction to<br>Electrodynamics                   | PHI                   | 5th<br>Edition,<br>2015      |
| 6         | Kourosh Kalantar-<br>zadeh                            | Sensors: An Introductory Course                      | Springer              | 2013                         |
| 7         | F.F. Chen                                             | Introduction to Plasma physics and controlled fusion | Springer              | 2016                         |



100

| <b>Course Code</b>       | Name of the Course |                       |     |     |       |  |  |
|--------------------------|--------------------|-----------------------|-----|-----|-------|--|--|
| 216U06C103               |                    | Engineering Chemistry |     |     |       |  |  |
|                          |                    |                       |     |     |       |  |  |
| Teaching Scheme          | TH                 | P                     |     | TUT | Total |  |  |
| (Hrs./Week)              | 03                 |                       |     |     | 03    |  |  |
| Credits Assigned         | 03                 |                       |     |     | 03    |  |  |
|                          |                    |                       |     |     |       |  |  |
| <b>Evaluation Scheme</b> | Marks              |                       |     |     |       |  |  |
|                          | LAB/TUT            | CA (TH)               |     | ESE | Total |  |  |
|                          | CA                 | IA                    | ISE |     |       |  |  |

#### **Course pre-requisites: Nil**

#### **Course Objectives:**

The objective of course is to appreciate the basic concepts of chemistry behind the development of futuristic materials and their applications in engineering and technology. The course objective is to understand chemical processes involved in development of sustainable energy sources. To analyse the knowledge of analytical techniques involved in the analysis and characterization of chemical compounds, nanomaterial.

30

50

20

--

#### **Course Outcomes (CO):**

**CO1.** Identify and evaluate emerging technologies and best practices in water treatment and monitoring to continuously improve process.

- **CO2.** Identify and select different types of engineering materials including polymer ceramic, composite and metals for different application based on properties applications and limitations.
- **CO3.** Design and evaluate sustainable energy system such as solar, hydrocarbon, biodiesel, power alcohol including power generation and storage system.
- **CO4.** Understand and apply basic concepts of spectroscopy and electro-analytical technique in characterizing chemical compounds
- **CO5.** Understand the applications and limitations of computer applications in chemistry and identify the best practices for e waste management



| Module | Unit Contents                      |                                                                     | No of | CO  |
|--------|------------------------------------|---------------------------------------------------------------------|-------|-----|
| No.    | No.                                |                                                                     | Hrs.  |     |
| 1      | Techn                              | ologies in Water Quality Monitoring                                 | 09    | CO1 |
|        | 1.1                                | Introduction, Types of Hardness, Equivalence of CaCO <sub>3</sub> , |       |     |
|        |                                    | Experimental determination of hardness                              |       |     |
|        | 1.2                                | Emerging Technology for Sustainable Water Treatment: Lime           |       |     |
|        |                                    | soda method Zeolite method, Ion Exchange process, Methods to        |       |     |
|        |                                    | determine extent of water pollution, BOD, COD, Treatment of         |       |     |
|        | 1.0                                | Industrial wastewater.                                              |       |     |
|        | 1.3                                | Artificial Intelligence & Internet of Things in Water Management:   |       |     |
|        |                                    | artificial intelligence and machine learning in integrated water    |       |     |
|        |                                    | system                                                              |       |     |
| 2      | Mater                              | isls in Engineering Applications                                    | 11    | CO2 |
| 4      | 2.1                                | Polymers: Polymers as Industrials Materials Conducting              | 11    | 02  |
|        | 2.1                                | polymers. Fabrications of Polymers, Biodegradable Polymers          |       |     |
|        | 2.2                                | Nanomaterials: Introductions, Classifications, Growth Techniques    |       |     |
|        |                                    | for Nanomaterials, Applications                                     |       |     |
|        | 2.3                                | Common Materials used in Biomedical Applications: Metals &          |       |     |
|        |                                    | Alloys, Bio Ceramics, Composites, new materials in prosthetics      |       |     |
|        | 2.4                                | Materials for MEMS and microsystem: Introduction, Active            |       |     |
|        |                                    | substrate materials, Silicon as substrate materials, Working        |       |     |
|        |                                    | principle of Bio sensors and Chemical Sensors                       |       |     |
|        | ~                                  |                                                                     |       | ~~~ |
| 3      | Chemistry for Sustainable Energies |                                                                     | 09    | CO3 |
|        | 3.1                                | Energy & Sustainable Development, Renewable Energy, Solar           |       |     |
|        | 2.2                                | Line of Energy Definition abaracteristic of good fuel Calorifie     |       |     |
|        | 3.4                                | value of fuel Hydrocarbon as Fuel Bio Diesel Power Alcohol          |       |     |
|        | 3.3                                | Rechargeable Batteries: Lead acid battery Lithium ion battery       |       |     |
|        | 0.0                                | Nickel based battery, other battery technology                      |       |     |
|        |                                    |                                                                     |       |     |
| 4      | Spectr                             | oscopy and Instrumental methods of Analysis                         | 09    | CO4 |
|        | 4.1                                | UV spectroscopy, Principle, Instrumentation and application         |       |     |
|        | 4.2                                | IR spectroscopy, Basic Principle, Instrumentation and applications  |       |     |
|        | 4.3                                | 1H NMR Spectroscopy: Principle, Instrumentation, Chemical           |       |     |
|        |                                    | Shift, Factors affecting chemical shift, Applications               |       |     |
|        | 4.4                                | Electroanalytical techniques, pH-metry, Conductometry,              |       |     |
|        |                                    | Potentiometry                                                       |       |     |
| 5      | Cham                               | ister & Computors                                                   | 07    | COS |
| 5      | 5 1                                | Introduction: Philosophy of Computational Chemistry tools of        | 07    | COS |
|        | 5.1                                | Computational Chemistry Software and Hardware Applications          |       |     |
|        |                                    | of Computational Chemistry                                          |       |     |
|        | 5.2                                | Computational approach in Cheminformatics and Bioinformatics        |       |     |
|        | 5.3                                | E-waste Management: Sustainable Development & e-waste               |       |     |
|        |                                    | management, impact of legislations on materials used in             |       |     |
|        |                                    | electronics, printed circuit boards, Socio-economic factors         |       |     |
|        |                                    | Total                                                               | 45    |     |



# References

| Sr. | Name/s of Author/s | Title of Book             | Publisher           | Edition/ |
|-----|--------------------|---------------------------|---------------------|----------|
| No  |                    |                           |                     | Year     |
| 1   | Dr. S.S.Dara, Dr.  | A textbook of Engineering | S.Chand,            | India    |
|     | S.S. Umare         | Chemistry                 |                     | Revised  |
|     |                    |                           |                     | edition, |
|     |                    |                           |                     | 2015     |
| 2   | Shashi Chawla      | A textbook of Engineering | Dhanpat Rai & Co    | 3rd      |
|     |                    | Chemistry                 |                     | edition, |
|     |                    |                           |                     | 2017     |
| 3   | O G Palanna        | Enginnering Chemistry     | Mc Graw Hill, India | 2nd      |
|     |                    |                           |                     | edition, |
|     |                    |                           |                     | 2017     |



| Course Code              | Name of the Course    |    |               |     |       |  |
|--------------------------|-----------------------|----|---------------|-----|-------|--|
| 216U06C104               | Engineering Mechanics |    |               |     |       |  |
|                          |                       |    |               |     |       |  |
| <b>Teaching Scheme</b>   | TH                    | P  | r             | ГИТ | Total |  |
| (Hrs./Week)              | 03                    |    |               |     | 03    |  |
| Credits Assigned         | 03                    |    |               |     | 03    |  |
|                          |                       |    |               |     |       |  |
| <b>Evaluation Scheme</b> |                       |    | Marks         |     |       |  |
|                          | LAB/TUT               | CA | ( <b>TH</b> ) | ESE | Total |  |
|                          | CA                    | IA | ISE           |     |       |  |
|                          |                       | 20 | 30            | 50  | 100   |  |

Basics of units and conversions, Basics of Trigonometry, Newton's Laws of Motion

#### **Course Objectives:**

Engineering mechanics is the application of physics to solve problems involving common engineering elements. This course introduces system of forces and its effect on stationary and moving objects. The goal of this course is to expose students to problems in real-world scenarios and respond accordingly.

#### **Course Outcomes (CO):**

### At the end of successful completion of the course the student will be able to

CO1. Evaluate resultant and moment of a force system

**CO2.** Analyse the concept of kinematics of particle and rigid body.

CO3. Determine centre of gravity of wires (rods), lamina and solids

CO4. Analyse applications of equilibrium using free body diagram

**CO5.** Analyse the dynamic system using D'Alembert, work energy and impulse momentum principle.



| Module | Unit Contents                                                                           |                                                                     | No of | CO  |  |
|--------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------|-----|--|
| No.    | No.                                                                                     |                                                                     | Hrs.  |     |  |
| 1      | System                                                                                  | n of forces                                                         | 07    | CO1 |  |
|        | 1.1                                                                                     | System of coplanar forces: Resultant of concurrent forces, parallel |       |     |  |
|        |                                                                                         | forces, non-concurrent non parallel system of forces, moment of     |       |     |  |
|        |                                                                                         | force about a point, couples, Varignon's theorem, Principle of      |       |     |  |
|        |                                                                                         | transmissibility of forces (Vector and analytical approach).        |       |     |  |
|        | 1.2                                                                                     | Resultant of forces in space.                                       |       |     |  |
| 2      | Kinem                                                                                   | atics of Particles and Rigid Bodies                                 | 11    | CO2 |  |
|        | 2.1                                                                                     | Variable motion, motion curves (a-t, v-t, s-t) (acceleration curves |       |     |  |
|        |                                                                                         | restricted to linear acceleration only), motion along plane curved  |       |     |  |
|        |                                                                                         | path, velocity & acceleration in terms of rectangular components,   |       |     |  |
|        |                                                                                         | tangential & normal component of acceleration                       |       |     |  |
|        | 2.2 Introduction to general plane motion, problems based on ICR                         |                                                                     |       |     |  |
|        |                                                                                         | method for general plane motion of bodies (up to 2 linkage          |       |     |  |
|        | mechanism and no relative velocity method).                                             |                                                                     |       |     |  |
| 3      | Centro                                                                                  | bid of Wires and Laminas                                            | 05    | CO3 |  |
|        | 3.1                                                                                     | Centroid of wires/rods.                                             |       |     |  |
|        | 3.2                                                                                     | Centroid of plane laminas: Plane lamina consisting of primitive     |       |     |  |
|        |                                                                                         | geometrical shapes.                                                 |       |     |  |
| 4      | Equili                                                                                  | brium of Force System and Friction                                  | 13    | CO4 |  |
|        | 4.1                                                                                     | Equilibrium of system of coplanar forces: Condition of              |       |     |  |
|        |                                                                                         | equilibrium for concurrent forces, parallel forces and non-         |       |     |  |
|        |                                                                                         | concurrent, non-parallel force system (general force system), Free  |       |     |  |
|        |                                                                                         | body diagram.                                                       |       |     |  |
|        | 4.2                                                                                     | Types of support, loads, beams, determination of reactions at       |       |     |  |
|        |                                                                                         | supports for various types of loads on beams (excluding internal    |       |     |  |
|        | 10                                                                                      | hinge and compound beam problems).                                  |       |     |  |
|        | 4.3                                                                                     | Laws of friction, cone of friction, angle of repose, equilibrium of |       |     |  |
|        |                                                                                         | bodies on inclined plane, application to problems involving         |       |     |  |
| -      | 17°                                                                                     | wedges and ladders.                                                 | 00    | COF |  |
| 5      | 5 1                                                                                     | cs of particle                                                      | 09    | 005 |  |
|        | 5.1                                                                                     | of dynamic coulibrium Newton's second law of motion (only           |       |     |  |
|        |                                                                                         | of dynamic equilibrium, Newton's second law of motion (only         |       |     |  |
|        | 5.2                                                                                     | Work operate principle                                              |       |     |  |
|        | 5.2 work energy principle.<br>5.3 Impulse and Momentum: Principle of linear impulse and |                                                                     |       |     |  |
|        | 5.3                                                                                     | momentum law of conservation of momentum impact and                 |       |     |  |
|        |                                                                                         | collision direct central and oblique central impact                 |       |     |  |
|        |                                                                                         | Total                                                               | 45    |     |  |



# References

| Sr. | Name/s of Author/s  | Title of Book                        | Publisher             | <b>Edition</b> / |
|-----|---------------------|--------------------------------------|-----------------------|------------------|
| No  |                     |                                      |                       | Year             |
| 1   | Tayal, A.K.         | Engineering Mechanics, Statics and   | Universal             | 14th             |
|     |                     | Dynamics                             | Publication, India    | Edition          |
|     |                     |                                      |                       | 2011             |
| 2   | Bhavikatti S. S.    | Engineering Mechanics                | New Age               | Revised          |
|     |                     |                                      | international, India  | Edition          |
|     |                     |                                      |                       | 2019             |
| 3   | Hibbeler, H. C. and | Engineering Mechanics, Statics and   | Prentice Hall Private | Revised          |
|     | Gupta               | Dynamics                             | limited, India        | Edition          |
|     |                     |                                      |                       | 2017             |
| 4   | Bhattacharyya B.    | attacharyya B. Engineering Mechanics |                       | 2nd              |
|     |                     |                                      | Press, India          | Edition          |
|     |                     |                                      |                       | 2014             |
| 5   | Ram H.D. and        | Foundations and Applications of      | Cambridge             | 1st              |
|     | Chauhan A.K.        | Engineering Mechanics                | University Press, UK  | Edition          |
|     |                     |                                      |                       | 2015             |



| <b>Course Code</b>       | Name of the Course  |    |       |     |       |  |
|--------------------------|---------------------|----|-------|-----|-------|--|
| 216U06C105               | Engineering Drawing |    |       |     |       |  |
|                          |                     |    |       |     |       |  |
| <b>Teaching Scheme</b>   | TH                  | P  |       | TUT | Total |  |
| (Hrs./Week)              | 02                  |    |       | 01  | 03    |  |
| Credits Assigned         | 02                  |    |       | 01  | 03    |  |
|                          |                     |    |       |     |       |  |
| <b>Evaluation Scheme</b> |                     |    | Marks |     |       |  |
|                          | LAB/TUT             | CA | (TH)  | ESE | Total |  |
|                          | CA                  | IA | ISE   |     |       |  |
|                          |                     | 20 | 30    | 50  | 100   |  |

Knowledge of various geometric constructions, Basics of trigonometry.

#### **Course Objectives:**

The students will be able to

- 1. Familiarize with the conventions and standards along with the principles of projections applied to points and lines.
- 2. Apply the principles of orthographic projections to draw elevation, plan, end view, isometric views etc.
- 3. Apply the principles of orthographic projections to draw various views of regular solid objects.
- 4. Apply the fundamentals of solid geometry and develop lateral surfaces of solids

### **Course Outcomes (CO):**

### At the end of successful completion of the course the student will be able to

**CO1.** Able to visualize and draw projection of lines and planes

CO2. Able to visualize and draw orthographic projection and sectional views of given 3D object.

**CO3.** Able to visualize and draw isometric drawing.

**CO4.** Able to draw projection of regular solids

CO5. Able to draw sectional views and lateral development of regular solids



| Module | Unit                                                                          | Contents                                                           | No of | CO  |
|--------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|-------|-----|
| No.    | No.                                                                           |                                                                    | Hrs.  |     |
| 1      | Projec                                                                        | tion of points, lines and planes                                   | 08    | CO1 |
|        | 1.1                                                                           | Introduction to Engineering Drawing, Standard sizes of drawing     |       |     |
|        |                                                                               | sheets, Types of lines, Dimensioning, Scales, Drawing pencils etc. |       |     |
|        | 1.2                                                                           | Projection of points, Projection of lines inclined to both the     |       |     |
|        |                                                                               | reference planes. (Line in 1 <sup>st</sup> quadrant ONLY)          |       |     |
|        | <b>1.3</b> Projection of Planes: Triangular, Square, Rectangular, Pentagonal, |                                                                    |       |     |
|        | Hexagonal and Circular planes inclined to one reference plane                 |                                                                    |       |     |
|        |                                                                               | only and perpendicular to other.                                   |       |     |
|        |                                                                               |                                                                    |       |     |
| 2      | Orthog                                                                        | 06                                                                 | CO2   |     |
|        | 2.1                                                                           | Orthographic projections of simple machine parts by first angle    |       |     |
|        |                                                                               | method as recommended by Indian standards                          |       |     |
|        | 2.2                                                                           | Sectional views of simple machine parts (full section ONLY).       |       |     |
|        |                                                                               |                                                                    |       |     |
| 3      | Isometric View/Drawing                                                        |                                                                    |       | CO3 |
|        | 3.1 Introduction to isometric view/drawing, isometric projection              |                                                                    |       |     |
|        | 3.2                                                                           | Construction of isometric drawing of simple machine parts          |       |     |
|        |                                                                               |                                                                    |       |     |
| 4      | Projec                                                                        | tion of Solids                                                     | 06    | CO4 |
|        | 4.1                                                                           | Introduction to Projection of Solids, Classification of Solids     |       |     |
|        | 4.2                                                                           | Projection of right regular solids (prism, pyramid, cylinder, and  |       |     |
|        |                                                                               | cone) inclined to one reference plane only (excluding spheres,     |       |     |
|        |                                                                               | hollow and composite solids)                                       |       |     |
|        |                                                                               |                                                                    |       |     |
| 5      | Section                                                                       | n and Development of Solids                                        | 06    | CO5 |
|        | 5.1                                                                           | Projection of sectional views of solids (prism, pyramid, cylinder, |       |     |
|        |                                                                               | and cone) cut by the plane perpendicular to one and inclined to    |       |     |
|        |                                                                               | other reference plane only (excluding curved cutting planes).      |       |     |
|        | 5.2                                                                           | Lateral surface development of solids (prism, pyramid, cylinder,   |       |     |
|        |                                                                               | and cone) cut by the section plane inclined to one reference plane |       |     |
|        |                                                                               | only. (excluding reverse development)                              |       |     |
|        |                                                                               | Total                                                              | 30    |     |

# References

| Sr. | Name/s of Author/s | Title of Book                     | Publisher           | Edition/         |
|-----|--------------------|-----------------------------------|---------------------|------------------|
| No  |                    |                                   |                     | Year             |
| 1   | N.D. Bhatt         | Engineering Drawing               | Charotar Publishing | 53 <sup>rd</sup> |
|     |                    |                                   | House Pvt. Ltd      | Revised          |
|     |                    |                                   |                     | 2014             |
| 2   | P. S. Gill         | Engineering Graphics and Drafting | S.K. Kataria & Sons | Revised          |
|     |                    |                                   |                     | Edition,         |
|     |                    |                                   |                     | India,           |
|     |                    |                                   |                     | 2014             |
| 3   | Lakhwinder Pal     | Engineering Drawing Principles    | Cambridge           | 2021             |
|     | Singh              | And Applications                  | University Press    |                  |
|     |                    |                                   |                     |                  |



| <b>Course Code</b>       | Name of the Course                                 |    |         |     |   |       |
|--------------------------|----------------------------------------------------|----|---------|-----|---|-------|
| 216U06C106               | Elements of Electrical and Electronics Engineering |    |         |     |   |       |
|                          |                                                    |    |         |     |   |       |
| <b>Teaching Scheme</b>   | TH                                                 | Р  |         | TUT |   | Total |
| (Hrs./Week)              | 03                                                 | 03 |         |     |   | 03    |
| Credits Assigned         | 03                                                 |    |         |     |   | 03    |
|                          |                                                    |    |         |     |   |       |
| <b>Evaluation Scheme</b> |                                                    |    | Marks   | 5   |   |       |
|                          | LAB/TUT                                            | CA | CA (TH) |     | E | Total |
|                          | CA                                                 | IA | ISE     |     |   |       |
|                          |                                                    | 20 | 30      | 50  | ) | 100   |

Knowledge of Basic Electrical parameters: Resistance, Inductance, Capacitance, Frequency, Voltage, Current and Power and Energy, basic laws of magnetism

**Course Objectives:** It is difficult to imagine life without electricity and electronics. Electricity plays a major role in the working of all minor and major devices used in our day to day life. In this course students acquire fundamental knowledge to understand the design of electrical and electronics systems.

#### **Course Outcomes (CO):**

**CO1.** Analyse resistive networks excited by DC sources using various network theorems

**CO2.** Demonstrate and analyse steady state response of single phase and three phase circuits

CO3. Understand principles and working of AC and DC machines with their applications.

**CO4.** Explain rectifier-filter circuits using PN junction diode and voltage regulator circuits using Zener diode

**CO5.** Understand Bipolar Junction transistor and its applications



| Module | Unit Contents                                                                                          |                                                                                                                                                                                                                                                                                                                | No of | CO  |
|--------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| No.    | No.                                                                                                    |                                                                                                                                                                                                                                                                                                                | Hrs.  |     |
| 1      | DC cir                                                                                                 | rcuits                                                                                                                                                                                                                                                                                                         | 12    | CO1 |
|        | 1.1                                                                                                    | Concept of dependent and independent sources, ideal and practical voltage and current sources, Kirchhoff's Laws, source transformation and network terminology.                                                                                                                                                |       |     |
|        | 1.2                                                                                                    | Resistive network simplification, Series, parallel connection and Star-Delta transformations                                                                                                                                                                                                                   |       |     |
|        | 1.3                                                                                                    | Mesh and nodal analysis, concept of super mesh and super node (Analysis only with independent sources )                                                                                                                                                                                                        |       |     |
|        | 1.4                                                                                                    | Superposition theorem, Thevenin's theorem, Norton's theorem,<br>Maximum power transfer theorem (Analysis only with<br>independent sources)                                                                                                                                                                     |       |     |
| 2      |                                                                                                        | ita                                                                                                                                                                                                                                                                                                            | 15    | CON |
|        | <u>AC cm</u><br>2.1                                                                                    | Generation of alternating voltage, average value, RMS value, form factor, crest factor, phasor representation in rectangular and polar form.                                                                                                                                                                   | 15    | CO2 |
|        | 2.2                                                                                                    |                                                                                                                                                                                                                                                                                                                |       |     |
|        | 2.3                                                                                                    |                                                                                                                                                                                                                                                                                                                |       |     |
|        | 2.4                                                                                                    | Series and parallel resonance, Q-factor and bandwidth                                                                                                                                                                                                                                                          |       |     |
|        | <b>2.5</b> Three-phase balanced circuits, voltage and current relations in star and delta connections. |                                                                                                                                                                                                                                                                                                                |       |     |
|        | 2.6                                                                                                    | Measurement of power in 3-phase system using two wattmeter method                                                                                                                                                                                                                                              |       |     |
| _      |                                                                                                        |                                                                                                                                                                                                                                                                                                                |       |     |
| 3      | Electr                                                                                                 | ical Machines                                                                                                                                                                                                                                                                                                  | 12    | CO3 |
|        | 3.1                                                                                                    | Single phase transformer construction and principle of working,<br>emf equation of a transformer, losses in transformer, equivalent<br>circuit of Ideal and practical transformer, voltage regulation and<br>efficiency of transformer, phasor diagram at various loading<br>condition (No numerical expected) |       |     |
|        | 3.2                                                                                                    | Construction and working principle of DC motors such as series,<br>shunt and compound, torque-speed characteristics, selection<br>criteria and applications (no derivations and numerical expected)                                                                                                            |       |     |
|        | 3.3                                                                                                    | Single phase induction motor: Construction, working principle,<br>double field revolving theory, split phase, capacitor start and<br>shaded pole motor. applications (no derivations and numerical<br>expected)                                                                                                |       |     |
|        | 3.4                                                                                                    | Three phase induction motor: Construction, working principle,<br>Generation of rotating magnetic field, applications. (no<br>derivations and numerical expected)                                                                                                                                               |       |     |
| 1      | Diada                                                                                                  | and their applications                                                                                                                                                                                                                                                                                         | 04    | CO4 |
| 4      | 4.1                                                                                                    | P-N Junction diode:<br>Construction and working of PN junction diode, current voltage<br>characteristics.<br>Application as Rectifier: Half wave rectifiers with resistive load,                                                                                                                               | 04    | UU4 |



|   | -                                               |                                                                    |    |     |  |
|---|-------------------------------------------------|--------------------------------------------------------------------|----|-----|--|
|   |                                                 | full wave center tap and bridge rectifier with resistive load with |    |     |  |
|   |                                                 | their parameters such as ripple factor, rectification efficiency,  |    |     |  |
|   |                                                 | transformer utilization factor. Filter circuits                    |    |     |  |
|   | 4.2                                             | Zener Diode:                                                       |    |     |  |
|   |                                                 | Construction and working, current voltage characteristics.         |    |     |  |
|   |                                                 | Application of Zener diode: Voltage regulator                      |    |     |  |
|   | 4.3 Light emitting diode (LED) and Photo Diode: |                                                                    |    |     |  |
|   |                                                 |                                                                    |    |     |  |
|   |                                                 | applications                                                       |    |     |  |
|   |                                                 |                                                                    |    |     |  |
| 5 | Bipola                                          | ar Junction Transistor and their applications                      | 03 | CO5 |  |
|   | 5.1                                             | Bipolar Junction Transistor (BJT):                                 |    |     |  |
|   |                                                 | BJT construction and operation, Common-Base (CB), Common-          |    |     |  |
|   |                                                 | Emitter (CE) and Common-Collector (CC) configurations and          |    |     |  |
|   |                                                 | input and output characteristics, operating point, DC biasing (No  |    |     |  |
|   |                                                 | Numerical expected)                                                |    |     |  |
|   | 5.2                                             | Application of BJT-CE configuration: Voltage amplifier,            |    |     |  |
|   |                                                 | Electronic Switch (No Numerical expected)                          |    |     |  |
|   |                                                 | · · · · · · · · · · · · · · · · · · ·                              |    |     |  |
|   | Self-le                                         | arning topics#                                                     |    |     |  |
|   |                                                 | Components of LT Switchgear: Switch Fuse Unit (SFU), MCB,          |    |     |  |
|   |                                                 | ELCB, MCCB                                                         |    |     |  |
|   |                                                 | Types of Wires and Cables, Earthing                                |    |     |  |
|   |                                                 | Types of Batteries, Important Characteristics for Batteries,       |    |     |  |
|   |                                                 | Elementary calculations for energy consumption, power factor       |    |     |  |
|   |                                                 | improvement and battery backup                                     |    |     |  |
|   |                                                 | Lamps- fluorescent, CFL, LED                                       |    |     |  |
|   |                                                 | Electrical measuring instruments principle and applications-       |    |     |  |
|   |                                                 | energy meter, megger, tong tester.                                 |    |     |  |
|   |                                                 | Total                                                              | 45 |     |  |

# Students should prepare all self-learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA.

# References

| Sr. | Name/s of         | Title of Book                      | Publisher         | Edition/         |
|-----|-------------------|------------------------------------|-------------------|------------------|
| No  | Author/s          |                                    |                   | Year             |
| 1   | B. L. Thereja     | Electrical Technology Vol-1 and    | S. Chand          | 25 <sup>th</sup> |
|     |                   | Vol-II                             |                   | Edition          |
|     |                   |                                    |                   | 2014             |
| 2   | Mittle and Mittle | Basic Electrical Engineering       | Tata McGraw Hill, | $2^{nd}$         |
|     |                   |                                    | India             | edition          |
|     |                   |                                    |                   | (New)            |
|     |                   |                                    |                   | 2001             |
| 3   | Singh Ravish R    | Basic Electrical Engineering       | S. Chand          | $1^{st}$         |
|     | -                 |                                    |                   | Edition,         |
|     |                   |                                    |                   | 2023             |
| 4   | B.R. Patil        | Basic Electrical Engineering       | Oxford University | $2^{nd}$         |
|     |                   |                                    | Press             | Edition,         |
|     |                   |                                    |                   | 2022             |
| 5   | Donald Neamen     | Microelectronics: Circuit Analysis | Tata McGraw Hill  | $4^{\text{th}}$  |
|     |                   | and Design                         | India             | Edition          |
|     |                   | -                                  |                   | 2021             |



| Course Code              | Name of the Course |      |         |     |       |  |
|--------------------------|--------------------|------|---------|-----|-------|--|
| 216U06L101               | Python Programming |      |         |     |       |  |
|                          |                    |      |         |     |       |  |
| Teaching Scheme          | TH                 | Р    |         | TUT | Total |  |
| (Hrs./Week)              |                    | 02   |         | 02  | 04    |  |
| Credits Assigned         |                    | 01   |         | 02  | 03    |  |
|                          |                    |      |         |     |       |  |
| <b>Evaluation Scheme</b> |                    |      | Marks   |     |       |  |
|                          | LAB/TUT            | CA ( | CA (TH) |     | Total |  |
|                          | CA                 | IA   | ISE     |     |       |  |
|                          | 75                 |      |         |     | 75    |  |

Basic knowledge of computer peripheral devices

### **Course Objectives:**

The objective of the course is to impart knowledge of python programming. The course mainly introduces basic in python programming language concepts like data structures, Decision Making statements and Functions. Further the course also covers the concept of file handling and python packages. This first course in programming enables students to develop domain specific software based solutions..

#### **Course Outcomes (CO):**

### At the end of successful completion of the course the student will be able to

**CO1.** Formulate problem statement and develop the logic (algorithm/flowchart) for its solution.

CO2. Understand the concepts of data structures in python.

CO3. Use different Decision Making statements and Functions in Python.

CO4. Apply the concept of exception handling and file handling in python.

**CO5.** Illustrate the use of python packages.



| Module | Unit                                                          | Contents                                                              | No of               | CO  |
|--------|---------------------------------------------------------------|-----------------------------------------------------------------------|---------------------|-----|
| No.    | No.                                                           |                                                                       | Hrs.                |     |
|        |                                                               |                                                                       | (Tutorial<br>+ Lab) |     |
| 1      | Introdu                                                       | action to Python                                                      | 06                  | CO1 |
|        | 1.1                                                           | Problem solving skill development: Problem Definition,                |                     |     |
|        | 1.0                                                           | tundamentals of algorithms and flowcharts                             |                     |     |
|        | 1.2                                                           | Features of python programming                                        |                     |     |
|        | 1.3                                                           | Applications of python programming in real world                      |                     |     |
|        | 1.4                                                           | Execution of python program: Compliation, interpreter                 |                     |     |
|        | 1.5                                                           | Introduction to various python IDE and its installation.              |                     |     |
|        |                                                               | nuroduction to Command interface and Oraphical interface of           |                     |     |
|        |                                                               | python execution                                                      |                     |     |
| 2      | Data ty                                                       | ones and data structures in python                                    | 14                  | CO2 |
|        | 2.1                                                           | Data Types in Python Whitespace Code Block Indeptation                | 14                  | 002 |
|        |                                                               | Comments, Variables, reserved key words, Naming conventions,          |                     |     |
|        |                                                               | Python's built-in type                                                |                     |     |
|        | 2.2 Operators in Python, Basic built-in Math functions        |                                                                       |                     |     |
|        | <b>2.3</b> Strings, format(), print(), type casting in python |                                                                       |                     |     |
|        | 2.4                                                           | Data Structures: Tuples, List, Dictionaries, Set, Arrays,             |                     |     |
|        |                                                               | Conversion of data structures methods                                 |                     |     |
|        |                                                               |                                                                       |                     |     |
| 3      | Decisio                                                       | on Making and Functions in python                                     | 16                  | CO3 |
|        | 3.1                                                           | If statement: if, if-else, elif, Nested if, pass statement            |                     |     |
|        | 3.2                                                           | Repetition using While loop, for loop & range function, break,        |                     |     |
|        |                                                               | continue and pass statement                                           |                     |     |
|        | 3.3                                                           | Defining a Function, Checking & Setting Parameters                    |                     |     |
|        |                                                               | Types of arguments: Required arguments, Reyword arguments             |                     |     |
|        | 31                                                            | Default arguments, Valiable-length arguments                          |                     |     |
|        | 3.4                                                           | Recursion Lambda and Filter Man                                       |                     |     |
|        | 5.5                                                           | Recursion, Lamoua and Thier, wap                                      |                     |     |
| 4      | Python                                                        | exception and file handling                                           | 12                  | CO4 |
| •      | 4.1                                                           | Error. Types of error: Runtime error. compile type error. logical     |                     | 00. |
|        |                                                               | error, Exceptions Handling and Assertions                             |                     |     |
|        | 4.2                                                           | Types of Files in Python, Opening a File: File opening modes,         |                     |     |
|        |                                                               | Closing a File, Writing Text Files, Appending in Text Files           |                     |     |
|        | 4.3                                                           | Working with Binary Files, File Exceptions                            |                     |     |
|        |                                                               |                                                                       |                     |     |
| 5      | Python                                                        | packages                                                              | 12                  | CO5 |
|        | 5.1                                                           | Introduction to packages, Installation, Use                           |                     |     |
|        | 5.2                                                           | Introduction to Numpy, ndarray, datatypes, shape, reshape,            |                     |     |
|        |                                                               | iterating, join, split, search, sort, filter, slice, Mathematical and |                     |     |
|        | 5.2                                                           | String functions                                                      |                     |     |
|        | 5.3                                                           | muouucuon to Python Matpiolith, Markers, line, labels, grid,          |                     |     |
|        |                                                               | Self-learning: Seaborn library                                        |                     |     |
|        |                                                               | Total                                                                 | 60*                 |     |

\*Laboratory+Tutorial



# References

| Sr.<br>No | Name/s of Author/s                     | Title of Book                                         | Publisher                  | Edition/<br>Vear                     |
|-----------|----------------------------------------|-------------------------------------------------------|----------------------------|--------------------------------------|
| 1         | Reema Thareja                          | Python Programming: Using<br>Problem Solving Approach | Oxford University<br>Press | First Ed<br>ition 20<br>17, India    |
| 2         | Dr. R. Nageswara<br>Rao                | Core Python Programming                               | Wiley Publication.         | Second<br>Edition<br>2018,Ind<br>ia  |
| 3         | Sheetal Taneja<br>and Naveen Kumar     | Python Programing: A Modular<br>Approach              | Pearson India              | Second<br>Edition<br>2018, I<br>ndia |
| 4         | Yashavant Kanetkar                     | Let us Python                                         | Let us Python              | 4 <sup>th</sup><br>edition<br>2022   |
| 5         | Official<br>documentation of<br>Python | https://docs.python.org/3/tutorial/                   | Python Officials           | -                                    |
| 6         | Python Tutorial website                | https://realpython.com/                               | Python web URL             | -                                    |



| Course Code              | Name of the Course             |      |         |     |       |  |
|--------------------------|--------------------------------|------|---------|-----|-------|--|
| 216U06L102               | Engineering Physics Laboratory |      |         |     |       |  |
|                          |                                |      |         |     |       |  |
| <b>Teaching Scheme</b>   | TH                             | P    | ,       | ГИТ | Total |  |
| (Hrs./Week)              |                                | 02   |         |     | 02    |  |
| <b>Credits Assigned</b>  |                                | 01   |         |     | 01    |  |
|                          |                                |      |         |     |       |  |
| <b>Evaluation Scheme</b> |                                |      | Marks   |     |       |  |
|                          | LAB/TUT                        | CA ( | CA (TH) |     | Total |  |
|                          | CA                             | IA   | ISE     |     |       |  |
|                          | 50                             |      |         |     | 50    |  |



| Course Code              | Name of the Course |                                  |         |     |     |       |  |
|--------------------------|--------------------|----------------------------------|---------|-----|-----|-------|--|
| 216U06L103               |                    | Engineering Chemistry Laboratory |         |     |     |       |  |
|                          |                    |                                  |         |     |     |       |  |
| <b>Teaching Scheme</b>   | TH                 | P                                |         | J   | TUT | Total |  |
| (Hrs./Week)              |                    | 02                               |         |     |     | 02    |  |
| Credits Assigned         |                    | 01                               |         |     |     | 01    |  |
|                          |                    |                                  |         |     |     |       |  |
| <b>Evaluation Scheme</b> |                    |                                  | Mar     | ·ks |     |       |  |
|                          | LAB/TUT            | CA                               | CA (TH) |     | ESE | Total |  |
|                          | CA                 | IA                               | IA ISE  |     |     |       |  |
|                          | 50                 |                                  |         |     |     | 50    |  |



| Course Code              | Name of the Course |                                  |         |     |       |  |  |  |
|--------------------------|--------------------|----------------------------------|---------|-----|-------|--|--|--|
| 216U06L104               |                    | Engineering Mechanics Laboratory |         |     |       |  |  |  |
|                          |                    |                                  |         |     |       |  |  |  |
| <b>Teaching Scheme</b>   | TH                 | Р                                |         | TUT | Total |  |  |  |
| (Hrs./Week)              |                    | 02                               |         |     | 02    |  |  |  |
| Credits Assigned         |                    | 01                               |         |     | 01    |  |  |  |
|                          |                    |                                  |         |     |       |  |  |  |
| <b>Evaluation Scheme</b> |                    |                                  | Marks   |     |       |  |  |  |
|                          | LAB/TUT            | CA (                             | CA (TH) |     | Total |  |  |  |
|                          | CA                 | IA ISE                           |         |     |       |  |  |  |
|                          | 50                 |                                  |         |     | 50    |  |  |  |



| Course Code              |         | Name of the Course             |         |     |       |  |  |  |
|--------------------------|---------|--------------------------------|---------|-----|-------|--|--|--|
| 216U06L105               |         | Engineering Drawing Laboratory |         |     |       |  |  |  |
|                          |         |                                |         |     |       |  |  |  |
| <b>Teaching Scheme</b>   | TH      | P                              |         | TUT | Total |  |  |  |
| (Hrs./Week)              |         | 02                             |         |     | 02    |  |  |  |
| <b>Credits Assigned</b>  |         | 01                             |         |     | 01    |  |  |  |
|                          |         |                                |         |     |       |  |  |  |
| <b>Evaluation Scheme</b> |         |                                | Marks   |     |       |  |  |  |
|                          | LAB/TUT | CA (                           | CA (TH) |     | Total |  |  |  |
|                          | CA      | IA                             | ISE     |     |       |  |  |  |
|                          | 50      |                                |         |     | 50    |  |  |  |



| <b>Course Code</b>       | Name of the Course |                                                               |         |     |       |  |  |  |
|--------------------------|--------------------|---------------------------------------------------------------|---------|-----|-------|--|--|--|
| 216U06L106               | Elements of        | Elements of Electrical and Electronics Engineering Laboratory |         |     |       |  |  |  |
|                          |                    |                                                               |         |     |       |  |  |  |
| <b>Teaching Scheme</b>   | TH                 | P                                                             | r       | ГИТ | Total |  |  |  |
| (Hrs./Week)              |                    | 02                                                            |         |     | 02    |  |  |  |
| Credits Assigned         |                    | 01                                                            |         |     | 01    |  |  |  |
|                          |                    |                                                               |         |     |       |  |  |  |
| <b>Evaluation Scheme</b> |                    |                                                               | Marks   |     |       |  |  |  |
|                          | LAB/TUT            | CA (                                                          | CA (TH) |     | Total |  |  |  |
|                          | CA                 | IA                                                            | ISE     |     |       |  |  |  |
|                          | 50                 |                                                               |         |     | 50    |  |  |  |



| Course Code            |       | Name of the Course     |       |     |       |     |        |     |  |
|------------------------|-------|------------------------|-------|-----|-------|-----|--------|-----|--|
| 216U06P101             |       | Project Based Learning |       |     |       |     |        |     |  |
|                        |       |                        |       |     |       |     |        |     |  |
| <b>Teaching Scheme</b> | T     | H                      | Р     |     | TUT   |     | Total* |     |  |
| (Hrs./Week)            | SEM I | SEM                    | SEM I | SEM | SEM I | SEM | SEM I  | SEM |  |
|                        |       | II                     |       | II  |       | II  |        | II  |  |
|                        |       |                        |       | 02  | 02    |     | 02     | 02  |  |
| Credits Assigned       |       |                        |       | 02  |       |     |        | 02  |  |
|                        |       |                        |       |     |       |     |        |     |  |

| <b>Evaluation Scheme</b> | Marks   |         |     |     |       |  |  |
|--------------------------|---------|---------|-----|-----|-------|--|--|
|                          | LAB/TUT | CA (TH) |     | ESE | Total |  |  |
|                          | CA      | IA      | ISE |     |       |  |  |
|                          | 50      |         |     |     | 50    |  |  |

\*Course will run in both the semesters. Lab/Tutorial activities in semester I and Project in semester II. Credits and evaluation for the course will be done collectively at the end of semester II.

#### Course pre-requisites: Nil

#### **Course Objectives:**

This course aims at promoting creativity, collaborative work, problem-solving approach in students from an early stage. It establishes strong foundations for students' development as Engineering graduates with skills of project based learning and awareness about environment and sustainability while solving real world problems.

#### **Course Outcomes (CO):**

#### At the end of successful completion of the course the student will be able to

CO1. Understand the engineering design process for a real life application

- **CO2.** Apply the engineering design process to build a product using simple mechanisms, controllers and software development approaches.
- **CO3.** Explore the scope of robotics and automation in various applications
- **CO4.** Understand the notion of sustainability and design the product, system, or process in accordance with the United Nations' sustainable development goals.



| Trade | Unit   | Contents                                                             | No of | СО  |
|-------|--------|----------------------------------------------------------------------|-------|-----|
| No    | No.    |                                                                      | Hrs.  |     |
| 1     | Introd | uction to Project Based Learning (PBL)                               |       |     |
|       | 1.1    | Introduction to Engineering and Engineering Study, Introduction      | 04    | CO1 |
|       |        | to Engineering Projects, and design thinking. Significance of        |       |     |
|       |        | teamwork, Ethics in Engineering                                      |       |     |
|       | 1.     | Activity based on design thinking                                    |       | 001 |
|       | 1.2    | Introduction to Project management : Life cycle of project           | 02    | COI |
| 2     | Engin  | Activity based on Team building                                      | 06    | CO2 |
| 4     |        | Engineering Design Process Need statement finalization Problem       | 00    | 02  |
|       | 2.1    | statement formulation. Pairwise comparison chart                     |       |     |
|       |        | Activity for problem statement formation                             |       |     |
|       | 2.2    | Basic Components of a Mechanism Introduction to mechatronics         |       |     |
|       |        | system. Degrees of Freedom or Mobility of a Mechanism 4 Bar          |       |     |
|       |        | Chain, Crank Rocker Mechanism, Slider Crank Mechanism                |       |     |
|       |        | Simple Robotic Arm building                                          |       |     |
|       |        | Introduction of biomechanics: Musculoskeletal biomechanics,          |       |     |
|       |        | Cardiovascular Mechanisms, Case studies on applications of           |       |     |
|       |        | biomechanics on bones, joints, muscles, tissues etc.                 |       |     |
|       | 2.3    | Introduction to sensors, transducers and actuators Interfacing of    |       |     |
|       |        | Arduino with various sensors like temperature, humidity, IR          |       |     |
|       |        | sensor, Bio sensors and materials                                    |       |     |
| -     |        |                                                                      |       |     |
| 3     | Roboti | ics/Automation                                                       | 06    | CO3 |
|       | 3.1    | Introduction to industrial revolutions, Components of Industrial     |       |     |
|       | 2.2    | revolution, Robot components, Common robot applications.             |       |     |
|       | 3.2    | Introduction to various platform based development (Arduino)         |       |     |
|       | 2.2    | Introduction to automation in manufacturing Automation               |       |     |
|       | 5.5    | techniques. Case studies of industrial automation                    |       |     |
|       |        | techniques, ease studies of industrial automation.                   |       |     |
| 4     | Sustai | nability Solutions                                                   | 06    | CO4 |
| •     | 4.1    | SDG 7 : Affordable and clean energy -                                | 00    | 00. |
|       |        | Renewable / alternative energy resources. Waste to energy            |       |     |
|       |        | technology, zero waste technology and circular economy               |       |     |
|       | 4.2    | SDG 9 & 11 : Industry, innovation and infrastructure -               |       |     |
|       |        | Sustainable building design criteria and certification system, green |       |     |
|       |        | building materials, urban infrastructure & smart cities              |       |     |
|       |        | Community outreach (water, sanitation, Agriculture)                  |       |     |
|       | 4.3    | SDG 13 : Climate action                                              |       |     |
|       |        | Climate action plan, Ecological footprint, product life cycle        |       |     |
|       |        | analysis                                                             |       |     |
|       | 4.4    | SDG 14 & 15 : Life below water and Life on land                      |       |     |
|       |        | Underwater sensing and detection (physical / chemical / biological   |       |     |
|       |        | parameters)<br>Demote sensing and CIS for any ironment assessment    |       |     |
|       |        | Remote sensing and GIS for environment assessment                    | 24    |     |
|       |        | lotal                                                                | 24    |     |

**Note:** During Semester II, students need to do the project work. However, there may be laboratory sessions for the first 2-3 weeks.



| <b>Course Code</b>       |         |              |         |                |       |          |  |
|--------------------------|---------|--------------|---------|----------------|-------|----------|--|
| 216U06T101               |         | Presentation | and Cor | nmunication Sk | kills | n Skills |  |
|                          |         |              |         |                |       |          |  |
| <b>Teaching Scheme</b>   | ТН      | Р            |         | TUT            | Total | Total    |  |
|                          |         |              |         | 02             | 02    | 02       |  |
| <b>Credits Assigned</b>  |         |              |         | 02             | 02    | 02       |  |
|                          |         |              |         |                |       |          |  |
| <b>Evaluation Scheme</b> |         |              | Mar     | ks             |       |          |  |
|                          | LAB/TUT | CA           | (TH)    | ESE            | Total | SE Total |  |
|                          | CA      | IA           | ISF     | C              |       |          |  |
|                          | 50      |              |         |                | 50    | 50       |  |

Grammar of English Language, Reading and Listening Comprehension, Letter Writing

**Course Objectives:** The focus of this course is to improve presentation and soft skills. The course aims to inculcate in students, self-management and interpersonal skills for enhanced workplace communication. The course also focuses on developing soft skills and business writing skills of the students.

#### **Course Outcomes (CO):**

At the end of successful completion of the course the student will be able to

CO1. Use basic communication and behavioural skills in day-to-day communication.

CO2. To present themselves effectively in business meetings and group discussions.

CO3. Perform confidently and effectively in campus placements.

**CO4.** Compose business letters, technical proposals and e-communication messages.

**CO5.** Manage the self for a successful career.



| Module | Unit    | Contents                                                      | No of | CO  |
|--------|---------|---------------------------------------------------------------|-------|-----|
| No.    | No.     |                                                               | Hrs.  |     |
| 1      | Soft Sl | kills                                                         | 06    | CO1 |
|        | 1.1     | Non-verbal Communication                                      |       |     |
|        | 1.2     | Assertiveness                                                 |       |     |
|        |         | Barriers to communication                                     |       |     |
|        | 1.3     | Emotional Intelligence                                        |       |     |
|        |         |                                                               |       |     |
| 2      | Effecti | ive Business Presentations                                    | 08    | CO2 |
|        | 2.1     | Business Meetings: Notice, Agenda, Minutes, and Mock Meetings |       |     |
|        | 2.2     | Presentations: Language and Style                             |       |     |
|        | 2.3     | Debates                                                       |       |     |
|        | 2.4     | Group Discussion                                              |       |     |
|        |         |                                                               |       |     |
| 3      | Emplo   | yment Skills                                                  | 08    | CO3 |
|        | 3.1     | Mock Interviews                                               |       |     |
|        | 3.2     | SOP Writing                                                   |       |     |
|        | 3.3     | Job Application and Resume                                    |       |     |
|        | 3.4     | Corporate Ethics                                              |       |     |
|        |         |                                                               |       |     |
| 4      | Profes  | sional Writing Skills                                         | 04    | CO4 |
|        | 4.1     | Business Letters: Inviting Quotations, Sending Quotations,    |       |     |
|        |         | Placing Orders                                                |       |     |
|        | 4.2     | Writing Escalation Letters and Emails                         |       |     |
|        | 4.3     | Proposal Writing: Language, Style and Types                   |       |     |
|        |         |                                                               |       |     |
| 5      | Self-M  | lanagement                                                    | 04    | CO5 |
|        | 5.1     | Developing a Growth Mind-Set                                  |       |     |
|        | 5.2     | Time Management                                               |       |     |
|        | 5.3     | Stress Management                                             |       |     |
|        |         | Total                                                         | 30    |     |

# **Reference Books**

| Sr. | Name/s of                                | Title of Book                                                                                               | Publisher                   | Edition/                                         |
|-----|------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------|
| 1   | Sharma, R C.<br>and<br>Krishna Mohan     | Basic Correspondence and Report<br>Writing: A Practical Approach to<br>Business and Technical Communication | Tata McGraw- Hill,<br>India | 1 <sup>st</sup><br>Edition,<br>2017              |
| 2   | Wallace, Harold<br>R. and<br>Ann Masters | Personal Development for Life and Work.                                                                     | Cengage,<br>USA             | 10 <sup>th</sup><br>Edition,<br>2012             |
| 3   | Sullivan, Jay                            | Simply Said: Communicating Better at<br>Work and Beyond                                                     | Wiley                       | 1 <sup>st</sup><br>Edition,<br>2018<br>(reprint) |
| 4   | Petes S. J.,<br>Francis.                 | Soft Skills and Professional Communication.                                                                 | Tata<br>McGraw-Hill, India  | 1 <sup>st</sup><br>Edition,<br>2011              |
| 5   |                                          | DLM software (Language Lab)                                                                                 | Thaliyola Infotech          |                                                  |



| Course Code              | Name of the Course |                             |               |     |       |  |  |  |
|--------------------------|--------------------|-----------------------------|---------------|-----|-------|--|--|--|
| 216U06W101               |                    | Basic Workshop Practice - I |               |     |       |  |  |  |
|                          |                    |                             |               |     |       |  |  |  |
| Teaching Scheme          | TH                 | P                           |               | TUT | Total |  |  |  |
| (Hrs./Week)              |                    | 02                          |               |     | 02    |  |  |  |
| Credits Assigned         |                    | 02                          |               |     | 02    |  |  |  |
|                          |                    |                             |               |     |       |  |  |  |
| <b>Evaluation Scheme</b> |                    |                             | Marks         |     |       |  |  |  |
|                          | LAB/TUT            | CA                          | ( <b>TH</b> ) | ESE | Total |  |  |  |
|                          | CA                 | IA                          | ISE           | ]   |       |  |  |  |
|                          | 50                 |                             |               |     | 50    |  |  |  |

**Course Objectives:** The main objective of the engineering workshop is to provide all engineering students with theoretical and practical knowledge of the manufacturing environment. The workshop is the foundation of the real industrial environment, and it helps students develop and improve relevant technical hand skills. It teaches the fundamentals of various hand tools, power tools, machine tools, and their applications in various areas of manufacturing. The workshop experiences would help in developing an understanding of the complexity of the industrial job, as well as the time and skill requirements.

# **Course Outcomes (CO):**

At the end of successful completion of the course the student will be able to

- **CO1.** Apply the safety measures practiced while using the tools, equipment, devices, etc.
- **CO2.** Understand the functions and uses of various tools, machines, and devices used in engineering practice to create objects out of raw materials.
- CO3. Know various operations and processes carried out in basic engineering shops.
- **CO4.** Interpret job drawings, plan the processes, and carry out the operations to manufacture basic components from raw materials.
- **CO5.** Work with confidence and communicate effectively.



| Module | Unit    | Contents                                                          | No. of   | CO       |
|--------|---------|-------------------------------------------------------------------|----------|----------|
| No.    | No.     |                                                                   | Hrs.     |          |
| 1      | Carpe   | ntry shop (Compulsory trade)                                      | 06       | CO1      |
|        | 1.1     | Introduction to carpentry shop, Demonstration of measuring        |          | to       |
|        |         | instruments, cutting tools used in Carpentry shop, and Planning a |          | CO5      |
|        |         | job using Jack plane.                                             |          |          |
|        | 1.2     | One simple job consisting of lap joints is to be performed in a   |          |          |
|        |         | group consisting of Two students.                                 |          |          |
|        |         |                                                                   |          |          |
| 2      | Weldi   | ng shop (Compulsory trade)                                        | 06       | CO1      |
|        | 2.1     | Introduction to the Welding shop. Demonstration of welding tools  |          | to       |
|        |         | and equipment, arc welding practice.                              |          | CO5      |
|        | 2.2     | One simple job involving Lap, Butt, and Vertical joints is to be  |          |          |
|        |         | performed in a group consisting of Four students.                 |          |          |
|        |         |                                                                   |          |          |
| 3      | Printe  | d circuit board (PCB) shop (Compulsory trade)                     | 06       | CO1      |
|        | 3.1     | Introduction to PCB shop. Demonstration of tools, and material    |          | to       |
|        |         | used for PCB making.                                              |          | CO5      |
|        | 3.2     | Demonstration of PCB making.                                      |          |          |
|        |         |                                                                   |          |          |
| 4      | Fitting | shop*                                                             | 04       | CO1      |
|        | 4.1     | Introduction to Fitting shop, Demonstration of measuring          |          | to       |
|        |         | instruments, cutting tools, etc. used in Fitting shop.            |          | CO5      |
|        | 4.2     | One simple job involving filing, right angle making, and cutting  |          |          |
|        |         | to-size operations.                                               |          |          |
|        |         |                                                                   |          |          |
| 5      | Machi   | ne shop*                                                          | 04       | CO1      |
|        | 5.1     | Introduction of all machines available in a machine shop.         |          | to       |
|        |         | Demonstration of assembling and disassembling of tools.           |          | CO3      |
|        | 5.2     | One demonstration job includes turning, facing, grooving,         |          | &        |
|        |         | threading, and other operations on a lathe machine.               | <u> </u> | CO5      |
|        |         |                                                                   |          |          |
| 6      | Electri | ical Wiring shop*                                                 | 04       | CO1      |
|        | 6.1     | Introduction to Electrical wiring. Demonstration of Electrician   |          | to       |
|        |         | tools like Tester, pliers, screwdriver, multimeter, etc.          |          | CO3      |
|        | 6.2     | Hands-on experience in House wiring or staircase wiring or        |          | &<br>COT |
|        |         | godown wiring. Exposure to connecting solar panels with battery   |          | CO5      |
|        |         | and tube light.                                                   |          |          |
| -      | G       |                                                                   | 0.4      | 001      |
| 7      | Comp    | uter hardware and assembly*                                       | 04       | COI      |
|        | 7.1     | Introduction to various PC hardware components                    |          |          |
|        | 7.2     | Demonstration of PC assembly                                      |          | CU3      |
|        |         |                                                                   |          | а<br>СО5 |
|        |         |                                                                   |          | 005      |
| Q      | Shoot   | motal working*                                                    | 04       | CO1      |
| 0      | 8 1     | Introduction to cheat metal working tools, operations             | 04       |          |
|        | 0.1     | Demonstration of various sheet metal exerctions                   |          | CO5      |
|        | 0.2     |                                                                   | 20       | 005      |
|        |         | Total                                                             | 30       |          |

\*Any Three from Module No 4 to 8



# **Reference Books**

| Sr. | Name/s of Author/s          | Title of Book        | Publisher          | <b>Edition/Year</b>       |
|-----|-----------------------------|----------------------|--------------------|---------------------------|
| No. |                             |                      |                    |                           |
| 1   | Hajra Choudhury S.K., Hajra | Elements of Workshop | Media Promoters,   | 16 <sup>th</sup> Edition, |
|     | Choudhury A.K.              | Technology,          | India              | 2015                      |
|     | and Nirjhar Roy             | Vol. I & II.         |                    |                           |
| 2   | Raghuwanshi B.S.            | A Course in Workshop | Dhanpat Rai and    | 10 <sup>th</sup> Edition, |
|     |                             | Technology,          | Co. India          | 2012                      |
|     |                             | Vol. I &II.          |                    | Reprint 2017              |
| 3   | Khurmi R.S. and Gupta J.K.  | Textbook of Workshop | S. Chand           | 16 <sup>th</sup> Edition, |
|     |                             | Technology           | Publications India | 2021                      |
|     |                             |                      |                    |                           |



| <b>Course Code</b>       | Name of the Course              |         |       |     |       |  |
|--------------------------|---------------------------------|---------|-------|-----|-------|--|
| 216U06C201               | <b>Applied Mathematics - II</b> |         |       |     |       |  |
|                          |                                 |         |       |     |       |  |
| <b>Teaching Scheme</b>   | TH                              | P       |       | TUT | Total |  |
| (Hrs./Week)              | 03                              | 00      |       | 01  | 04    |  |
| Credits Assigned         | 03                              | 00      |       | 01  | 04    |  |
|                          |                                 |         |       |     |       |  |
| <b>Evaluation Scheme</b> |                                 |         | Marks |     |       |  |
|                          | LAB/TUT                         | CA (TH) |       | ESE | Total |  |
|                          | CA                              | IA      | ISE   |     |       |  |
|                          | 25                              | 20      | 30    | 50  | 125   |  |

Rank of Matrix, system of Equations, Basics of Integration, Basics of Differentiation, Knowledge of standard curves

#### **Course Objectives:**

The objective of the course is to impart knowledge of Eigen Values and Eigen vectors of a matrix, concept of diagonalization, minimal polynomial and singular value decomposition. The course introduces the concept of successive differentiation and helps students to find series of some standard functions. The course communicates various techniques to solve improper integrals. The concept multiple integration is introduced and applications to find Area and Volume are discussed.

# **Course Outcomes (CO):**

At the end of successful completion of the course the student will be able to

- **CO1.** Apply the concept of Eigen values, Eigen vectors of a matrix to diagonalisation of a matrix, singular value decomposition, Cayley-Hamilton theorem, and functions of square matrices.
- **CO2.** Solve problems involving Successive derivatives of real variable functions. Expand a function as an infinite series using Taylor's and Maclaurin's series.
- **CO3.** Apply concept of Beta Gamma function and DUIS to solve improper integrals
- CO4. Find length of a curve using Cartesian, Polar and Parametric equations of curves.

**CO5.** Evaluate multiple integrals and use it to find Area and Volume.



| Module | Unit                                                       | Contents                                                              | No of | СО  |
|--------|------------------------------------------------------------|-----------------------------------------------------------------------|-------|-----|
| No.    | No.                                                        |                                                                       | Hrs   |     |
| 1      | Eigen                                                      | values & Eigen vectors                                                | 12    | CO1 |
|        | 1.1                                                        | Characteristic equation, Eigen values and Eigen vectors, Properties   |       |     |
|        |                                                            | of Eigen values and Eigen vectors                                     |       |     |
|        | 1.2                                                        | Statement of Cayley-Hamilton theorem, Examples based on               |       |     |
|        |                                                            | verification and application of Cayley-Hamilton theorem               |       |     |
|        | 1.3                                                        | Similarity of matrices, Diagonalization of a matrix                   |       |     |
|        | 1.4                                                        | Functions of square matrix, Derogatory and non-derogatory             |       |     |
|        |                                                            | matrices, Minimal polynomial                                          |       |     |
|        | 1.5                                                        | Singular Value Decomposition                                          |       |     |
|        |                                                            |                                                                       |       |     |
| 2      | Succes                                                     | sive Differentiation, Expansion Of Functions                          | 6     | CO2 |
|        | 2.1                                                        | Successive differentiation: nth derivative of standard functions.     |       |     |
|        |                                                            | Leibnitz's Theorem (without proof) and problems.                      |       |     |
|        | 2.2                                                        | Taylor's Theorem (only statement) and Taylor's series, Maclaurin's    |       |     |
|        |                                                            | series(only Statement) Expansion of $e^x$ , sinx, cosx,tanx           |       |     |
|        |                                                            | #Self-learning topic: Expansion of sinh(x), cosh(x), tanh(x), log (1  |       |     |
|        |                                                            | + x), Indeterminate forms, L'Hospital Rule, problems involving        |       |     |
|        |                                                            | series                                                                |       |     |
|        |                                                            |                                                                       |       |     |
| 3      | Integr                                                     | ation : Review And Some New Techniques                                | 8     | CO3 |
|        | 3.1                                                        | Beta and Gamma functions with properties                              |       |     |
|        | 3.2                                                        | Differentiation under integral sign with constant limits of           |       |     |
|        |                                                            | integration.(without proof)(simple examples)                          |       |     |
|        |                                                            | #Self-learning topic: Differentiation under integral sign with        |       |     |
|        | variable limits of integration.                            |                                                                       |       |     |
|        | _                                                          |                                                                       |       |     |
| 4      | Rectifi                                                    | cation                                                                | 4     | CO4 |
|        |                                                            | Pre-requisite: Idea of Curve tracing in Cartesian, Parametric and     |       |     |
|        |                                                            | polar forms. (Straight lines, Circles, Parabolas, Ellipse, Hyperbola, |       |     |
|        |                                                            | Catenary, Cissoid, Astroid, Cycloid, Lemniscate of Bernoulli,         |       |     |
|        | 4.1                                                        | Cardiode).                                                            |       |     |
|        | 4.1                                                        | Rectification of plane curves in Cartesian form                       |       |     |
|        | 4.2                                                        | Problems of Rectification in parametric and polar forms               |       |     |
| _      | N/14*                                                      |                                                                       | 15    | CO5 |
| 3      |                                                            | Devide integration and their Applications                             | 15    | 005 |
|        | 5.1                                                        | Double integration- introduction, Evaluation of Double integrals      |       |     |
|        |                                                            | with given limits and over the given region. (Cartesian and Polar     |       |     |
|        | 5 2                                                        | Change of order of integration Evaluation of double integrals by      |       |     |
|        | 3.2                                                        | changing order of integration, Evaluation of double integrals by      |       |     |
|        | <b>5.2</b> Application of double integrals to compute Area |                                                                       |       |     |
|        | 5.5 Application of double integrals to compute Area        |                                                                       |       |     |
|        | J.4                                                        | Cartesian form                                                        |       |     |
|        | 55                                                         | Problems of Triple integration using cylindrical and spherical Polar  |       |     |
|        | 5.5                                                        | coordinates                                                           |       |     |
|        | 56                                                         | Application of triple integral to compute volume                      |       |     |
|        | 5.0                                                        | # Self-learning topic: Mass of Lamina                                 |       |     |
|        |                                                            | " Sen-rearining topic, mass of Laninina                               | 15    |     |
|        |                                                            | Iotai                                                                 | 45    |     |



#Students should prepare all self-learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in Tutorials.

# **Reference Books**

| Sr. | Name/s of Author/s | Title of Book                     |             | Publisher            | Edi              | tion/Ye |
|-----|--------------------|-----------------------------------|-------------|----------------------|------------------|---------|
| No  |                    |                                   |             |                      |                  | ar      |
| 1   | B. S. Grewal       | Higher                            | Engineering | Khanna Publications, | 43 <sup>rd</sup> | Edition |
|     |                    | Mathematics                       |             | India                | 2014             | 4       |
| 2   | Shanti Narayan     | A text book of Matr               | ices        | S. Chand, India      | 10 <sup>th</sup> | Edition |
|     |                    |                                   |             |                      | 2004             | 4       |
| 3   | Erwin Kreyszig     | Advanced                          | Engineering | Wiley Eastern        | 10 <sup>th</sup> | Edition |
|     |                    | Mathematics                       |             | Limited, India       | 2013             | 5       |
| 4   | Ramana B.V.        | Higher                            | Engineering | Tata Mcgraw Hill     | 34 <sup>th</sup> | Edition |
|     |                    | Mathematics                       |             | New Delhi, India     | (rep             | rint)   |
|     |                    |                                   |             |                      | 2019             | 9       |
| 5   | Glyn James         | Advanced Modern                   | Engineering | Pearson Publication  | $4^{\text{th}}$  | Edition |
|     |                    | Mathematic                        |             | India                | 2010             | C       |
| 6   | M. D. Raisinghania | Ordinary and Partial Differential |             | S. Chand, India      | 18 <sup>th</sup> | Edition |
|     |                    | Equations                         |             |                      | 2013             | 3       |



| Course Code              | Name of the Course |                  |       |     |       |  |  |
|--------------------------|--------------------|------------------|-------|-----|-------|--|--|
| 216U06L201               |                    | Programming in C |       |     |       |  |  |
|                          |                    |                  |       |     |       |  |  |
| Teaching Scheme          | TH                 | Р                | r     | ГИТ | Total |  |  |
| (Hrs./Week)              |                    | 02               |       | 02  | 04    |  |  |
| Credits Assigned         |                    | 01               |       | 02  | 03    |  |  |
|                          |                    |                  |       |     |       |  |  |
| <b>Evaluation Scheme</b> |                    |                  | Marks |     |       |  |  |
|                          | LAB/TUT            | AB/TUT CA (TH)   |       | ESE | Total |  |  |
|                          | CA                 | IA               | ISE   |     |       |  |  |
|                          | 75                 |                  |       |     | 75    |  |  |

Basic knowledge of computer peripheral devices, software concepts, Programming concepts

### **Course Objectives:**

The course is designed to provide complete knowledge of C language. Students will be able to develop logics which will help them to create programs, applications in C. Also by learning the basic programming constructs they can easily switch over to any other language in future.

#### **Course Outcomes (CO):**

At the end of successful completion of the course the student will be able to

**CO1.** Understand the concepts of data types and operators

CO2. Illustrate the use of control structures.

**CO3.** Apply the concepts of arrays and strings.

CO4. Design modular programs using functions and the use of structure and union.

**CO5.** Apply concepts of pointers in dynamic memory allocation and file handling.



| Module | Unit    | Contents                                                                                                                                       | No of               | CO  |
|--------|---------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----|
| No.    | No.     |                                                                                                                                                | Hrs.<br>(Tutorial   |     |
|        |         |                                                                                                                                                | (Tutorial<br>+ Lab) |     |
| 1      | Introdu | action to C                                                                                                                                    |                     |     |
|        | 1.1     | C Program execution process, Structure of C program and its                                                                                    |                     |     |
|        |         | Elements: Keywords and Identifiers, Literals, Variables                                                                                        |                     |     |
|        | 1.2     | Data Types and its qualifiers, Declaration and Initialization of                                                                               |                     |     |
|        |         | Variables, Local and Global Variables, Declaring Constants,                                                                                    |                     |     |
|        |         | input/output functions printf and scanf function                                                                                               | 08                  | CO1 |
|        | 13      | Types of Operators: Introduction Arithmetic Operators                                                                                          | 00                  | COI |
|        | 1.5     | Relational Operators Logical Operators Assignment Operators                                                                                    |                     |     |
|        |         | Increment and Decrement Operators, Conditional Operator                                                                                        |                     |     |
|        |         | Bitwise Operators. Special Operators Comma Operator.                                                                                           |                     |     |
|        |         | dereferencing operator, Expressions and Evaluation of                                                                                          |                     |     |
|        |         | Expressions, Operator Precedence and Associativity, Type                                                                                       |                     |     |
|        |         | Conversions                                                                                                                                    |                     |     |
|        |         |                                                                                                                                                |                     |     |
| 2      | Contro  | 1 Structures                                                                                                                                   |                     |     |
|        | 2.1     | Decision Making and Branching Control Structures: if                                                                                           |                     |     |
|        |         | Statement, Multiple, Statements within if, if – else Statement,                                                                                | 10                  | CO1 |
|        | 2.2     | Nested II – else, else II Ladder,                                                                                                              | 12                  | 02  |
|        | 2.2     | Leoning Control Structures: While Loon For Loon Do While                                                                                       |                     |     |
|        | 2.3     | Loop Loop                                                                                                                                      |                     |     |
|        | 2.3     | Jump Statements: Break and Continue, goto Statement                                                                                            |                     |     |
|        |         | I the second                                 |                     |     |
| 3      | Arrays  | and Strings                                                                                                                                    |                     |     |
|        | 3.1     | Arrays: Introduction to One Dimensional Arrays,                                                                                                |                     |     |
|        |         | Multidimensional Arrays, Declaration and Initialization of                                                                                     |                     |     |
|        |         | Arrays, Reading and Displaying arrays, introduction string and                                                                                 | 12                  | CO3 |
|        |         | various operation on strings, string handling inbuilt functions                                                                                |                     |     |
|        | 3.2     | Character Arrays and Strings: Introduction, Declaring and                                                                                      |                     |     |
|        |         | Character Boading and Writing Strings String Handling                                                                                          |                     |     |
|        |         | Functions                                                                                                                                      |                     |     |
|        |         | 1 unctions                                                                                                                                     |                     |     |
| 4      | User de | efined function and Structures                                                                                                                 |                     |     |
|        | 4.1     | User Defined Functions: Need, Function Declaration and                                                                                         |                     |     |
|        |         | Definition, Return Values, Function Calls, Passing Arguments                                                                                   |                     |     |
|        |         | to a Function by Value, Recursive functions                                                                                                    | 14                  | CO4 |
|        | 4.2     | Structures and Unions: Introduction, Declaring and defining                                                                                    |                     |     |
|        |         | Structure, Structure Initialization, Accessing and Displaying                                                                                  |                     |     |
|        |         | Structure Members, Array of Structures, Introduction to Unions,                                                                                |                     |     |
|        |         |                                                                                                                                                |                     |     |
| 5      | Pointer | s and dynamic memory allocation and C pre-processor                                                                                            |                     |     |
| ~      | 5.1     | Introduction to pointers: Pointer declaration and initialization.                                                                              |                     |     |
|        |         | <b>1</b> Introduction to pointers: Pointer declaration and initialization,<br>Pointer addition and subtraction, Evaluating pointer expressions |                     |     |
|        |         | Pointers and Functions: Pass by Reference, Returning pointers                                                                                  |                     |     |
|        |         | from functions, File Handling                                                                                                                  | 14                  | CO5 |
|        | 5.2     | Dynamic Memory Allocation using Pointers: Dynamic memory                                                                                       |                     |     |



|     | allocation using malloc(), calloc() and realloc() and deallocation of memory using free() |     |  |
|-----|-------------------------------------------------------------------------------------------|-----|--|
| 5.3 | C Pre-processor, Directives, Macros                                                       |     |  |
|     | Total                                                                                     | 60* |  |

\*Laboratory+Tutorial

# **Reference Books**

| Sr. | Name/s of Author/s | Title of Book         | Publisher            | Edition/Year             |
|-----|--------------------|-----------------------|----------------------|--------------------------|
| INO |                    |                       |                      |                          |
| 1   | E. Balagurusamy    | Programming in ANSI C | McGraw-              | $8^{\text{tn}}$ Edition, |
|     |                    |                       | Hill Education, Indi | 2019                     |
|     |                    |                       | а                    |                          |
| 2   | Yashwant Kanetkar  | Let Us C              | BPB Publications, I  | 16th                     |
|     |                    |                       | ndia                 | Edition,                 |
|     |                    |                       |                      | 2017                     |
| 3   | Brian W.           | The C                 | Prentice Hall        | 2 <sup>nd</sup> Edition, |
|     | Kernighan and      | programming Language  |                      | 2015                     |
|     | Dennis Ritchie     |                       |                      |                          |
| 4   | Pradeep Dey        | Structured            | Oxford University    | 1 <sup>st</sup> Edition, |
|     | and Manas Ghosh    | Programming Approach  | Press, India         | 2016                     |



| Course Code              | Name of the Course                  |    |       |     |       |  |
|--------------------------|-------------------------------------|----|-------|-----|-------|--|
| 216U06W201               | <b>Basic Workshop Practice - II</b> |    |       |     |       |  |
|                          |                                     |    |       |     |       |  |
| <b>Teaching Scheme</b>   | TH P TUT Total                      |    |       |     |       |  |
| (Hrs./Week)              |                                     | 02 | 02    |     | 02    |  |
| Credits Assigned         |                                     | 02 |       |     | 02    |  |
|                          |                                     |    |       |     |       |  |
| <b>Evaluation Scheme</b> |                                     |    | Marks |     |       |  |
|                          | LAB/TUT                             | CA | (TH)  | ESE | Total |  |
|                          | CA                                  | IA | ISE   |     |       |  |
|                          | 50                                  |    |       |     | 50    |  |

**Course Objectives:** The main objective of the engineering workshop is to provide all engineering students with theoretical and practical knowledge of the manufacturing environment. The workshop is the foundation of the real industrial environment, and it helps students develop and improve relevant technical hand skills. It teaches the fundamentals of various hand tools, power tools, machine tools, and their applications in various areas of manufacturing. The workshop experiences would help in developing an understanding of the complexity of the industrial job, as well as the time and skill requirements.

#### **Course Outcomes (CO):**

#### At the end of successful completion of the course the student will be able to

**CO1.** Fabricate products on their own.

CO2. Enhance creativity by exploring new ideas.

CO3. Understand the entire product development and manufacturing process.

CO4. Work as a team member, learn new skills, and develop leadership qualities.

CO5. Maintain safety standards and dimensional accuracy in different manufacturing processes.



| Module | Unit                                                                | Contents                                                            | No of | CO  |
|--------|---------------------------------------------------------------------|---------------------------------------------------------------------|-------|-----|
| No.    | No.                                                                 |                                                                     | Hrs.  |     |
| 1      | Comp                                                                | uter hardware and assembly                                          | 10    | CO1 |
|        | 1.1                                                                 | Identify the different PC components, Assemble a Desktop PC         |       | to  |
|        |                                                                     | from its components, Install any operating systems on the PC, and   |       | CO5 |
|        |                                                                     | Troubleshoot.                                                       |       |     |
|        | 1.2                                                                 | Introduction to computer-controlled machines.                       |       |     |
|        |                                                                     |                                                                     |       |     |
| 2      | Printe                                                              | d circuit board (PCB) shop                                          | 10    | CO1 |
|        | 2.1                                                                 | Read the given circuit drawing, create a process plan, and Identify |       | to  |
|        | the different tools required.                                       |                                                                     |       | CO5 |
|        | 2.2 Manufacture the product according to the given specifications.  |                                                                     |       |     |
|        |                                                                     |                                                                     |       |     |
| 3      | Welding shop                                                        |                                                                     | 10    | CO1 |
|        | 3.1 Read the given drawing, create a process plan, and Identify the |                                                                     |       | to  |
|        |                                                                     | different tools required.                                           |       | CO5 |
|        | 3.2                                                                 | Manufacture the product according to the given specifications.      |       |     |
|        |                                                                     |                                                                     |       |     |
| 4      | Carpe                                                               | ntry shop                                                           | 10    | CO1 |
|        | 4.1                                                                 | Read the given drawing, Prepare the process plan, and Identify the  |       | to  |
|        |                                                                     | different tools required.                                           |       | CO5 |
|        | 4.2                                                                 | Manufacture the product as per the given specifications.            |       |     |
|        |                                                                     |                                                                     |       |     |
| 5      | Sheet                                                               | metal shop                                                          | 10    | CO1 |
|        | 5.1                                                                 | Read the given drawing, create a process plan, and Identify the     |       | to  |
|        | different tools required.                                           |                                                                     |       | CO5 |
|        | 5.2                                                                 | Manufacture the product according to the given specifications.      |       |     |
|        |                                                                     | Total                                                               | 30    |     |

Note: Based on the department, the compulsory trades are

Computer hardware and assembly: Computer and Information Technology Departments

**Printed Circuit Board:** Electronics and Computer Engineering, Electronics and Telecommunications Engineering Departments

Welding shop: Mechanical Engineering Department

Students will be allotted to any TWO trades apart from compulsory trade.

# **Reference Books**

| Sr. | Name/s of Author/s             | Title of Book | Publisher       | Edition/Year              |
|-----|--------------------------------|---------------|-----------------|---------------------------|
| No. |                                |               |                 |                           |
| 1   | Hajra Choudhury S.K., Hajra    | Elements of   | Media           | 16 <sup>th</sup> Edition, |
|     | Choudhury A.K. and Nirjhar Roy | Workshop      | Promoters,      | 2015                      |
|     |                                | Technology,   | India           |                           |
|     |                                | Vol. I & II.  |                 |                           |
| 2   | Raghuwanshi B.S.               | A Course in   | Dhanpat Rai and | 10 <sup>th</sup> Edition, |
|     |                                | Workshop      | Co. India       | 2012                      |
|     |                                | Technology,   |                 | Reprint 2017              |
|     |                                | Vol. I &II.   |                 |                           |
| 3   | Khurmi R.S. and Gupta J.K.     | Textbook of   | S. Chand India  | 6 <sup>th</sup> Edition,  |
|     |                                | Workshop      |                 | 2007                      |
|     |                                | Technology    |                 | Reprint 2012              |

# END OF DOCUMENT